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AEROSOL PARTICLE MOTION 
 
Equation of Motion    
 
 Consider an aerosol particle in fluid flow as shown in Figure 1.  The equation of 
motion of a spherical aerosol particle of mass m and diameter d is given as  
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+−πµ=              (1) 

 
Here pu is the particle velocity, fu is the fluid velocity, g is the acceleration of gravity 
and the buoyancy effect in air is neglected.  Here it is assume that the particle is away 
from walls and the Stokes drag is assumed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Schematics of an aerosol motion in a gas flow. 
 

Dividing Equation (1) by 
cC
d3πµ and rearranging, we find 
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where the particle response (relaxation) time is defined as 
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where 
6

dm
p3ρπ= , ν is the kinematic viscosity of the fluid and fp /S ρρ=  is the density 

ratio.  In practice, for non-Brownian particles, 1≈cC  and       
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µ
ρ≈τ

18
d p2

                           (4) 

 
Terminal Velocity 
 
 For a particle starting from rest, the solution to (2) is given as  
 

 )e1)(( /tfp τ−−τ+= guu                        (5) 
 
where  fu  is assumed to be a constant vector.  For 0=fu  and large t, the terminal 
velocity of particle u t  is given by  
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Table 7 – Relaxation time τ for a unit density particle in air (p = 1 atm, T = 20 o C). 
Diameter, µm gut τ=  τ sec Stop Distance 

u o = 1 m/s 
Stop Distance 
u o = 10 m/s 

0.05 0.39 µm/s 4 × 10 8−  0.04 µm 4 × 10 4−  mm 
0.1 0.93 µm/s 9.15 × 10 8−  0.092 µm 9.15 × 10 4−  mm 
0.5 10.1 µm/s 1.03 × 10 6−  1.03 µm 0.0103 mm 
1 35 µm/s 3.57 × 10 6−  3.6 µm 0.0357 mm 
5 0.77 mm/s 7.86 × 10 5−  78.6 µm 0.786 mm 
10 3.03 mm/s 3.09 × 10 4−  309 µm 3.09 mm 
50 7.47 cm/s 7.62 × 10 3−  7.62 mm 76.2 mm 

 
 
Stopping Distance 
 
 In the absence of gravity and fluid flow, for a particle with an initial velocity of 
u p

o , the solution to (2) is given by  
 
 )e1( /t τ−−τ= p

o
p ux                 (7) 

 
 τ−= /teo

p uu                                     (8) 
 
where px is the position of the particle.  As t → ∞, u p→ 0 and 
 
 τ= p

o
p ux                                    (9) 
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is known as the stopping distance of the particle. For an initial velocity of 1000 cm/s, the 
stop distance for various particles are listed in table 7. 
 
Particle Path 
 
 For constant fluid velocity, integrating Equation (5), the position of the particle is 
given by 
  

)]e1(t)[()e1( /tf/t τ−τ− −τ−τ++−τ+= guuxx p
o

p
o

p                      (11) 
 

Here p
ox  is the initial position of the particle.  For a particle starting from rest, when the 

fluid velocity is in x-direction and gravity is in the negative y-direction, Equation (10) 
reduces to 
 

 )]e1(/t[u/x /tfp τ−−−τ=τ                      (12) 
 

 )]e1(/t[u/y /tfp τ−−−τα−=τ                     (13) 
 

where the ratio of the terminal velocity to the fluid velocity α  is given by 
 

 
τ

τ=α fu
g                   (14) 

 
Figure 2 shows the variation of vertical position of the particle with time. 
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Figure 2.  Variations of the particle vertical position with time. 
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 From Equations (12) and (13), it follows that 
 

 pp xy α−=                   (15) 
 
That is the particle paths are straight lines.  Figure 3 shows sample particle trajectories. 
 

 
Buoyancy Effects 
 
 For small particles in liquids, the buoyancy effect must be included.  Thus, 
Equation (1) is replaced by 
 

 guuu pf
p

)mm()(
C

d3
dt

d)mm( f

c

a −+−πµ=+            (16) 

 
where fm is the mass of the equivalent volume fluid given as 
 

6
dm

f3
f ρπ=               (17) 

 
and am is the apparent mass with ρ f  being the  fluid density.  For spherical particles, 

.m
2
1m fa =  
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Figure 3.  Sample particle trajectories. 
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 Keeping the same definition for particle relaxation time as given by (3), Equation 
(2) may be restated as  
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The expression for the terminal velocity then becomes 
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Note that the Basset force and the memory effects are neglected in this analysis. 
  


