AEROSOL PARTICLE MOTION
Equation of Motion

Consider an aerosol particle in fluid flow as shown in Figure 1. The equation of
motion of a spherical aerosol particle of mass m and diameter d is given as
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Here u”is the particle velocity, u’is the fluid velocity, g is the acceleration of gravity
and the buoyancy effect in air is neglected. Here it is assume that the particle is away
from walls and the Stokes drag is assumed.
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Figure 1. Schematics of an aerosol motion in a gas flow.

Dividing Equation (1) by 3C| d and rearranging, we find
du’ ¢
T—=(u —-u’)+1 2
” ( )+1g (2)

where the particle response (relaxation) time is defined as

mC, _d’p°C, _Sd’C,

C

T= =
3md 18 18v

3

)

Td’pP

where m =

, V is the kinematic viscosity of the fluid and S=p" /p" is the density

ratio. In practice, for non-Brownian particles, C, =1 and
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Terminal Velocity
For a particle starting from rest, the solution to (2) is given as
u’=(u" +1g)l-e™) (5)

where u’ is assumed to be a constant vector. For u’ =0 and large t, the terminal

velocity of particle u’ is given by

p*d’gC,

I8u (6)

u' =1g=

Table 7 — Relaxation time 1 for a unit density particle in air (p =1 atm, T =20° C).

Diameter, um u'=1g T sec Stop Distance Stop Distance
u,=1m/s u,=10m/s
0.05 0.39 um/s 4% 107" 0.04 um 4 x 10 mm
0.1 0.93 pum/s 915%x 107 0.092 um 9.15 x 10 ™ mm
0.5 10.1 pm/s 1.03 x 10°¢ 1.03 pm 0.0103 mm
1 35 um/s 357 x 107 3.6 um 0.0357 mm
5 0.77 mm/s 786 x 107 78.6 um 0.786 mm
10 3.03 mm/s 309 x 107 309 pm 3.09 mm
50 7.47 cm/s 762 %107 7.62 mm 76.2 mm
Stopping Distance

In the absence of gravity and fluid flow, for a particle with an initial velocity of
u’ , the solution to (2) is given by

X’ =ult(l-¢™"'") (7)
u’ =ue" (8)

where x" is the position of the particle. Ast— oo, u” — 0 and

x" =ult 9)
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is known as the stopping distance of the particle. For an initial velocity of 1000 cm/s, the
stop distance for various particles are listed in table 7.

Particle Path

For constant fluid velocity, integrating Equation (5), the position of the particle is
given by

X’ =x? +ult(l-e)+ " +1e)t—T1(1—-e"")] (11)
Here x! is the initial position of the particle. For a particle starting from rest, when the

fluid velocity is in x-direction and gravity is in the negative y-direction, Equation (10)
reduces to

xP/ut=[t/T-(1-e""")] (12)
yP/u't=—at/t-(1-e'")] (13)

where the ratio of the terminal velocity to the fluid velocity o is given by

a=-_5 (14)
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Figure 2. Variations of the particle vertical position with time.
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From Equations (12) and (13), it follows that

y* =-ax’ (15)

That is the particle paths are straight lines. Figure 3 shows sample particle trajectories.
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Figure 3. Sample particle trajectories.

Buoyancy Effects

For small particles in liquids, the buoyancy effect must be included. Thus,
Equation (1) is replaced by

dr _3md
dt C

C

(m+m?) (u' —u")+(m-m")g (16)

where m'is the mass of the equivalent volume fluid given as

- Td’p’
6

m

(17)

and m® is the apparent mass with p/ being the fluid density. For spherical particles,

m*=—m".
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Keeping the same definition for particle relaxation time as given by (3), Equation
(2) may be restated as

Ly du? - -u")+g(1-9) (18)

1+
28" dt

The expression for the terminal velocity then becomes

t 1. _pPd°gC p'
=1g(l--)=—2"c(1-— 18
e T TR (18)

Note that the Basset force and the memory effects are neglected in this analysis.



