Aerosol Measurement Techniques

Suresh Dhaniyala

Mechanical and Aeronautical Engineering Clarkson University

Aerosol

- Aerosol is a collection of liquid or solid particles suspended in air
 - Typical particle sizes 1 nm to 100 μm
 - Examples of aerosol particles
 - Resuspended soil particles
 - Smoke from power generation
 - Primary and secondary particles from automobile exhaust
 - Photochemically formed particles
 - Salt particles
 - Water droplets
 - Ice particles

Atmospheric aerosol

Aerosol emission from coal plants

Typical coal fly ash particle

SEM of some particles

Aerosol role

Wide range of roles

- Atmospheric pollution
 - Influence production and transport of pollutants
 - Cause visibility problems
 - Smog
- Health effects
 - Respiratory problems
 - Studies have shown correlation of nano-particle concentration in the urban environment to morbidity and mortality rates
- Global warming
 - Aerosols contribute to the earth's radiation budget
- Ozone loss
 - Polar stratospheric clouds provide the surface area for heterogeneous reactions that enable polar ozone loss

Industrial applications of aerosols

- Aerosol technology
 - Manufacture of spray-dried products
 - Fiber optics
 - Production of pigments
 - Application of pesticides
 - Nanomaterials and nanotechnology

Aerosol properties

- Different aerosol properties to be measured
 - Particle size
 - Number
 - Shape of particles
 - Mass
 - Composition
- Particle size is the most important matter to characterize aerosol behavior
 - Usually there is a distribution of particle sizes in the ambient

Atmospheric aerosol

Number distribution

Mass distribution

TABLE 14.3 Modal parameters for average urban aerosol.^a

Mode	CMD (µm)	GSD	C_N (cm ⁻³)	C_{vol} $(\mu \text{m}^3/\text{cm}^3)$
Nuclei	0.014	1.80	106,000	0.63
Accumulation	0.054	2.16	32,000	38.4
Coarse Particle	0.86	2.21	5.4	30.8

^aData from Whitby (1978).

Sampling artifacts

Fig. 7-3. Schematic representation of some important biases in aerosol monitoring. (Adapted from Willeke and Baron, 1990.)

Particle size characterization

FIGURE 1.6 Particle size ranges and definitions for aerosols.

Atmospheric sampling

- Measures used by EPA to quantify aerosols in the atmosphere with respect to air quality and health effects.
 - TSP (Total Suspended Particulate)
 - Measure of all aerosol particles suspended in the air.
 - Dominated by dust and other particles that may not have any serious health effects
 - Old measure by EPA to measure air pollution

- PM10

- Particulate mass of particles smaller than 10μm.
- Particles smaller than 10µm are respirable, i.e., they can be inhaled below the nasopharynx area (nose and mouth)
- This measure was in vogue till very recently and still applicable

Atmospheric sampling

- PM2.5

- Particulate mass of particles smaller than 2.5µm.
- These particles travel down below the tracheobronchial region (i.e., into the lungs)
- Also, significant fraction of anthropogenic aerosol (from human activities) are in this size range.
- EPA currently uses this measure to determine if the atmospheric aerosol concentrations are acceptable

- PM1.0

Maybe in the future

Ultrafine particles

- Usually corresponds to particles with aerodynamic diameter less than $0.1 \mu m$.
- These particles have shown to contribute significantly to respiratory problems
- No regulation yet for these particles

Human Airways

Particle deposition in the human respiratory system

Particle sizing

- Microscope analysis
 - Slow and difficult
 - Only possible for a small sample
 - Sizing is based on particle property
 - Particle projected surface
 - Particle volume to surface ratio
- Real-time sizing
 - Particle size obtained based on behavior
 - Real-time, in-situ information can be obtained
 - Easy to obtain information on a large dataset
 - Analysis is complicated
 - Subject to interpretation errors
 - Laboratory calibration is often required

Particle sizing instruments

- No single instrument can measure particle sizes over the entire range (1nm to 100µm)
- A combination of techniques are required for aerosol measurement
- Different measurements yield different information about the particle
 - Therefore, multiple instruments are commonly used for aerosol characterization

Particle sizing

Inertial samplers

Fig. 10-1. Four types of inertial classifiers.

Inertial sampling

- Particles have a finite inertia and hence can deviate from the gas streamlines if a curvilinear motion is induced
 - The curvilinear particle motion is characterized by Stokes number
 - Stokes number is the ratio of the time it takes a particle to adjust to flow changes (i.e.,particle relaxation time) to the time available for adjustment

$$Stk = \frac{\tau}{d_c/U_0} = \frac{\tau U_0}{d_c}$$

- As Stk \rightarrow 0, particles track the flow exactly
- As Stk $\rightarrow \infty$, particles resist any change in their direction

Inertial Impaction

$$Stk == \frac{\rho_p d_p^2 UC_c}{9\eta D_j}$$

• Where ρ_p is particle density, d_p is particle diameter, U is gas velocity, C_c is the Cunningham slip correction factor, η is the gas viscosity, and D_j is the jet diameter

Typical impactor efficiency curve

Inertial samplers

- With a series of impactors, particle mass as a function of size can be obtained
 - There are several commercially sold cascade impactors
 - One of the most popular methods to obtain particle mass distributions

Impactor

Virtual impactor

- Flow is split into two channels
 - Major flow carries most of the flow and small particles
 - Minor flow into which large particles from the total flow impact

Aerodynamic sizing

- Aerodynamic diameter
 - Diameter of a unit density sphere (i.e., $\rho_p=1$, similar to a water droplet) with the same settling velocity as the particle in question

 Aerodynamic size characterizes particle deposition in human lungs and filtration.

Aerodynamic sizer

- Time-of-flight instruments can provide real-time, high resolution measurement of aerodynamic particle size.
- Flow is accelerated through a nozzle, and small particles (< 0.3 μm) keep up with the acceleration while larger particles accelerate more slowly.
 - Particle size is obtained from measuring the transit time for particles between two laser beams.

Light Scattering

Mie Scattering

Fig. 16–2. Lorenz-Mie scattering response curve.

Light scattering instruments

- •Schematic of a simple light scattering instrument
 - small collection angle

- •Schematic of a CLIMET light scattering instrument
 - larger collection angle
 - Greater signal strength for the same aerosol size

Electrical mobility sizing

- Particles injected into the region with an applied electric field experience force in the r and z directions
 - z-direction force
 - Stokes drag due to flow around the particle

$$F_D = 3\pi \eta V d_p$$

- Where η is the gas viscosity, V is the gas velocity and d_p is the particle diameter.
- r-direction force
 - Due to the applied electric field

$$F_E = neE$$

 Where n is the number of charges on a particle, e is the charge on an electron, E is the applied electric field

DMA

HV supply 20-10,000V

- Differential Mobility analyzer (DMA)
 - Sizes particles by their electrical mobility
 - Usually very high resolution measurements are possible
 - Downstream particle counter is required for particle size distribution measurements
 - Usually a CNC
 - Due to the high accuracy of this instrument it is a standard aerosol instrument
 - Used for testing and validating new instrument performance

TSI 3080 DMA

Particle counting

- Condensation nucleus counter
 - Particles are grown by condensation
 - Usually a high vapor pressure liquid like Butanol is used
 - Particles are counted as they pass through a light scattering region
 - Popular instrument to measure total aerosol concentration
 - Can count particles of sizes > 2nm
 - Upper limit is dependent on particle transport through the instrument

CNC

Brownian motion and Diffusion

- Brownian motion
 - Random wiggling motion of particles
- Diffusion
 - Net transport of particles in a concentration gradient
- Both are characterized by the particle diffusion coefficient (D)

$$D = \frac{kTC_c}{3\pi\eta d_p}$$

Where k is the Boltzmann constant, T is the temperature, C_c is the slip correction factor, d_p is the particle diameter, η is the gas viscosity

Particle diameter (µm)	Mobility (m/N/s)	Diff Coeff (m ² /s)	Mean thermal vel (m/s)
0.00037	-	2.0 x 10 ⁻⁵	460
0.01	1.3×10^{13}	5.4 x 10 ⁻⁸	4.4
0.1	1.7×10^{11}	6.9 x 10 ⁻¹⁰	0.14
1.0	6.8 x 10 ⁹	2.7 x 10 ⁻¹¹	0.0044

Diffusion battery

Schematic of a five-stage diffusion battery consisting of a stainless steel collimated hole structure

Schematic of a 10-stage screen-type diffusion battery.

Instrument testing

- Aerosol generation
 - Need to generate aerosols of known sizes and number
- Aerosol conditioning
 - Need to control their charge
 - Need to humidify or dry them

Aerosol Generation

- A distribution of particles has a distribution of sizes
 - Narrow distribution of sizes Monodisperse
 - Wide distribution of sizes Polydisperse
- Different size ranges have different techniques for generation
 - Submicron particles (i.e., $D_p < 1 \mu m$)
 - Nebulizers both monodisperse and polydisperse
 - Electrospray both monodisperse and polydisperse nanoparticles
 - Nebulizer + DMA monodisperse particles
 - Supermicron particles (i.e., $D_p > 1 \mu m$)
 - Vibrating orifice Generator (VOAG TSI Inc) monodisperse
 - Dust feeder polydisperse

Nebulizer

Drawing of a DeVilbiss Model 40 Glass Nebulizer.

Aerosol Conditioning

- Aerosol dilution
 - Mixing with clean air
- Aerosol drying
 - Heater
 - Especially if water is used in aerosol generation
 - E.g., for experiments with salt and PSL aerosol
 - Diffusion dryer
 - Silica Gel is used to dry aerosols by diffusion of water vapor from the aerosol stream to silica gel
- Aerosol neutralization
 - Aerosols acquire charge during nebulization and other generation techniques
 - To replicate atmospheric conditions, aerosols have to carry a distribution of charges – charge distribution is close to Boltzmann
 - Neutralizers are used Po²¹⁰ or Kr ⁸⁵ are the most popular

Typical aerosol generation setup (Polydisperse aerosol)

Typical aerosol generation setup (Monodisperse aerosol)

Instrumentation research

- Two directions in particle sizing instrumentation
 - Improved resolution and accuracy
 - Required for fundamental research
 - Results in more expensive instrumentation
 - Portable and inexpensive instrumentation
 - For personal monitoring, Wide-spread global monitoring, urban air quality measurements
 - Might result in lower resolution
 - Challenges in flow and particle transport in narrow channels
 - Particle charging questions

References

- Useful books:
 - Aerosol technology, W.C. Hinds, Wiley, 1998
 - Aerosol measurement, P.A. Baron and K. Willeke, Wiley, 2001
- Important journals in the field
 - Aerosol Science and technology (http://www.aaar.org/ASandT.htm)
 - Journal of aerosol science (http://www.elsevier.com)
- Some important aerosol instrumentation manufacturers
 - TSI (www.tsi.com)
 - MSP (www.mspcorp.com)
 - R & P (<u>www.rpco.com</u>)
 - Particle Measuring Systems(<u>www.pmeasuring.com</u>)