
 

Dynamical Systems 
 
 Many engineering and natural systems are dynamical 
systems.  For example a pendulum is a dynamical system. 
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Figure 1.  S

 
State 
 

The state of the dynamical system specifies it conditions.  
For a pendulum in the absence of external excitation shown in 
the figure, the angle  and the angular velocity  uniquely 
define the state of the dynamical system.   
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Phase Space 

 
Plots of the state variables against one another are referred to as the p

representation.  Every point in the phase space identifies a unique state of t
For the pendulum, a plot of θ  versus & θ  is the phase space representation. 
 
Equation of Motion  
 

The equation of motion of a dynamical system is given by a set of d
equations.  That is  

)f(xx t,=&       
 
where x is the state and t is time.  The dynamical system is linear if the 
equation is linear.  For the  pendulum shown in Figure 1, the equation of motio
as  
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and the dynamical system is nonlinear.  For small amplitude oscillation, 
the equation of motion becomes 
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The dynamical system is now linear.  In Equations (2) and (3) oω is the natural
and ζ  is the damping coefficient. 
 
Autonomous and Nonautonomous Systems 
 

A system is said to autonomous if time does not appear explicitly in th
of motion.  The equation of motion of nonautonomous systems, however,
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depends on time.  Thus, the equations of motion given by (2) and (3) for a pendulum in 
absence of external excitation are for autonomous systems, while a forced pendulum is a 
nonautonomous system.  A nonautonomous system could be deterministic or stochastic. 
  
Orbit  

An orbit or trajectory is a curve in phase space, which is obtained by the solution 
of the equation of motion.  
 
Flow 

For a fixed time, f(x,t), the right-hand side of the equation of motion given by (1), 
identifies a vector field in the phase space that is tangent to the trajectories.   
 

Figure 2 shows the phase space and the flow for a damped pendulum given by 
Equation (2). The black arrows of the vector field are 
tangential to all trajectories in the phase space.  A two-dimensional phase space provides 
a qualitative picture of the behavior of the dynamical systems including its orbit and its 
flow.   

)sin2,( 2
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In Figure 2 the dashed red lines are null clines.  These are the lines where the time 

derivative of one component of the state variable is zero.  For the damped pendulum it 
follows that  
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Therefore, one null cline is the angle θ  axes and the other is a sinusoidal curve in the 
phase space.  On the first null cline the flow vector field is vertical (since ), while 
on the second one, the vector field is horizontal (since 

0=θ&
0=ω& ). 

Figure 2.  Schematics of the phase plane for the damped pendulum. 
(http://monet.physik.unibas.ch/~elmer/pendulum/bterm.htm). 
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Between the null clines the direction of the flow vector is determined by the signs 
of   At the intersection points of the null clines,  and the flow vector 
field is zero. These intersection points, which correspond to the stationary solutions, are 
called fixed points or equilibrium points.  Fixed points of a dynamical system could be 
stable or unstable.  

.and ωθ && ,0=ω=θ &&

 
Poincaré Section and Poincaré Map  
 Poincaré section and Poincaré map are tools for 
visualization of the flow in a phase space.  Poincaré 
section is a plane (or curved surface) in the phase space 
that is crossed by almost all orbits.  The Poincaré map 
maps the points of the Poincaré section onto itself. 
Consecutive intersection points of the orbit with the 
Poincaré section form the Poincaré map.  A Poincaré 
map represents a continuous dynamical system by a 
discrete one.  Poincaré maps are invertable maps 
because one gets from  by following the orbit 
backwards.  For the case of the forced pendulum the 
Poincaré section is defined by a certain phase of the time-periodic excitation.  
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Figure 3.  Schematics of Poincaré 
section and Poincaré map. 

 
Non-Wandering Set 

Non-wandering set is a set of points in the phase space for which all orbits 
starting from a point of this set come arbitrarily close and arbitrarily often to any point of 
the set.  Non-wandering sets are of four types.  These are 

  
• Fixed (stationary) points.  For the simple pendulum given by Equation (2), 

and  and  are fixed points.  0=θ=ω & 0=θ °=θ 180
• Limit cycles (periodic solutions).  These solutions are common for the linearized 

oscillation of a simple pendulum.  
• Quasi-periodic orbits.  Periodic solutions with at least two incommensurable 

frequencies.  These solutions occur for an undamped pendulum under periodic 
excitations.  

• Chaotic orbits.  Bound non-periodic solutions.  These solutions occur for a 
(nonlinear) pendulum under certain external excitations. 

  
The first three types can also occur in linear dynamical systems.  The fourth type 

appears only in nonlinear systems.  The Poincaré map for limit cycles become fixed 
points.  A non-wandering set can be either stable or unstable.  Changing a parameter of 
the system can change the stability of a non-wandering set.  This is accompanied by a 
change of the number of non-wandering sets due to a bifurcation. 
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Stability and Bifurcation 
 

In nonlinear dynamical system, the main questions are:  
 

• What is the qualitative behavior of the dynamical system?   
• How many non-wandering sets (fixed points, limit cycles, quasi-periodic or chaotic 

orbits) occur?   
• Which of the non-wandering sets are stable?   
• How does the number of non-wandering sets change with changes in the parameters 

of the system?  
 

The appearance and disappearance of non-wandering sets is called a bifurcation. 
Change of stability and bifurcation always coincide.  
 
Stability 
 

A non-wandering set may be stable or unstable.  The stability could be in the 
sense of  Lyapunov (weak) or Asymptotic  (strong).  
 
Lyapunov (Marginal) Stability 

A non-wandering set is said to be Lyapunov stable if every orbit starting in its  
neighborhood remains in its neighborhood.   
 
Asymptotic Stability  

A non-wandering set is said to be asymptotically stable if in addition to the 
Lyapunov stability, every orbit in its neighborhood approaches the non-wandering set 
asymptotically.  
 

Thus, a non-wandering set is either asymptotically stable, marginally stable 
(Lyapunov stable), or unstable.   
 
Attractors and Basin of Attraction 

Asymptotically stable non-wandering sets are also called attractors.  The basin of 
attraction is the set of all initial states approaching the attractor in the long time limit. 
 
Linear Stability of Non-Wandering Set 

To check the stability of a non-wandering set a linear stability analysis may be 
used.  Let  be an orbit that satisfies Equation (1).   That is  )t(ox

 
)f(xx t,oo =&        (4) 

 
The solution  is asymptotically stable if any infinitesimal small perturbation 

decays.  Assume that 
)t(ox

)t(x∆ xxx o ∆+= )t(  is the perturbed solution, and x  satisfies the 
equation of motion given by (1).  It then follows that  
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xfx o ∆⋅=

∆
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dt

)(d        (5) 

 
The linearized equation of motion for )t(x∆ given by (5) is justified as long as the orbit is 
in the neighborhood of .   ox
 

For fixed points, the fundamental solutions for )t(x∆ are  
 

s
tse xx ∆=∆ λ         (6) 

 

where and  are the eigenvalues and eigenvector of the Jacobian sλ sx∆
x
f

d
d , and s is the 

dimension of phase space.  The eigenvalues sλ  are the roots of the characteristic 
polynomial  
 

I
x
f

λ−
d
ddel =0        (6) 

 
The fixed point  is asymptotically stable if the real parts of all eigenvalues ox sλ are 
negative.  If at least one eigenvalue has a positive real part the corresponding 
fundamental solution would increase exponentially, and the fixed point will be unstable.  
 

Routh and Hurwitz theorem may be used to check the stability without explicitely 
calculating the eigenvalues.  For the case of a two-dimensional phase space the 
characteristic polynomial is quadratic.  Routh and Hurwitz theorem implies that both 

eigenvalues have negative real part if and only if 
j

i

dx
dfdet  is positive and the trace 

i

i

dx
df

  

is negative.  The region of stability and instability are shown in Figure 4.  
 
Nodes, Spiral and Saddle  

Figure 4 shows a classification scheme of the fixed (stationary) points in two-
dimensional phase spaces.  The notion spiral and node are inspired by the flow near the 
fixed point.  A pair of conjugated complex eigenvalues lead to a spiral, whereas a node is 
causes by two real eigenvalues of the same sign.  Real eigenvalues of different sign lead 
to a saddle.  That is, a saddle is a fixed point where at least one eigenvalue has a positive 
real part but also at least one eigenvalue has a negative real part.  Near a saddle, an orbit 
is usually attracted at first but repelled later on.  There are points in the phase space that 
approach the fixed point as ,t ∞→ and they form the stable manifold.  Saddles and their 
stable manifolds are usually the boundaries of a basin of attraction.  The pendulum shown 
in Figure 1 has a saddle point (corresponding to the upside-down equilibrium position) 
and a spiral if 1<ζ  or a node if 1>ζ  as shown in Figure 2. 
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Figure 4. The region of stability and instability and classification scheme of the fixed 
(stationary) points in two-dimensional phase spaces. 

http://monet.physik.unibas.ch/~elmer/pendulum/bif.htm
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Bifurcation 
 

The number of attractors in a nonlinear dynamical system can change when a 
system parameter is varied.  This change is called bifurcation and it is accompanied by a 
change of the stability of an attractor.  In a bifurcation point, at least one eigenvalue of 
the Jacobian will attain a zero real part.  There are three generic types of bifurcation. 
 
Stationary Bifurcation 

In a stationary bifurcation, a single real 
eigenvalue crosses the boundary of stability.   

 
 
 
 
Hopf Bifurcation 

Hopf bifurcation occurs when a conjugated 
complex pair crosses the boundary of stability.  In 
the time-continuous case, a limit cycle bifurcates.  It 
has an angular frequency that is given by the 
imaginary part of the crossing pair.   

 
 
 

In this section the main forms one-dimensional bifurcation are illustrated.  The 
phase space variable is u. The control parameter is µ . The bifurcation point is at  .0=µ  
The direction of motion in the one-dimensional phase space is shown by arrows. Stable 
(unstable) fixed points are drawn as red solid (dotted) lines.   
 
 
Pitchfork Bifurcation 

Pitchfork bifurcation is possible in dynamical systems with an inversion or 
reflection symmetry.  That is, an equation of motion that remains unchanged if one 
changes the sign of all phase space variables.  An example is a system governed by  

 
 u         (7) )u(u 2−µ=&

 
As the control parameter µ  varies the stationary solutions and their stability 

conditions changes.  For there is one equilibrium solution, u=0, which is stable.  
For there are three equilibrium solutions u=0, and 

,0<µ

,0>µ .u µ±=  Here, u=0 is unstable 

while µ±=u are stable.  At ,0=µ a bifurcation occurs which is referred to as 
(supercritical) pitchfork bifurcation. 

 
 

Similarly for a system governed by  
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Figure 5.  Schematics of a pitchfork bifurcation. 

 
 u         (8) )u(u 2+µ=&

 
there are three equilibrium solutions u=0, and µ−±=u  for 0<µ .   In this case u=0 is 

a stable solution while µ−±=u  are unstable. For ,0>µ there is only one solution, 
u=0, which is stable.  In this case at ,0=µ a (subercritical) pitchfork bifurcation occurs.  

 
Transcritical Bifurcation 

Consider a dynamical system given by  
 

    (9) u)u(u −µ=&
For there are two equilibrium solution, u=0,  
which is stable, and u , which is unstable. For 

there are still the same two equilibrium 
solution.  But u=0  is unstable, and 

,0<µ
µ=

,0>µ
µ=u  is now 

stable. That is at  the two stationary solution 
exchanged their stability.  In this case it is said that 
a transcritical bifurcation occurred.  

,0=µ
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