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Abstract

We rigorously study a recent algorithm due to Davidchack and Lai (DL) [Davidchack RL, Lai Y-C. Phys Rev E 1999;60(5):6172-5]
for efficiently locating complete sets of hyperbolic periodic orbits for chaotic maps. We give theorems concerning sufficient conditions
on convergence and also describing variable sized basins of attraction of initial seeds, thus pointing out a particularly attractive feature
of the DL-algorithm. We also point out the true role of involutary matrices which is different from that implied by Schmelcher and
Diakonos [Schmelcher P, Diakonos FK. Phys Rev E 1998;57(3):2739-46] and propagated by Davidchack and Lai. © 2001 Elsevier
Science Ltd. All rights reserved.

1. Introduction

Periodic orbits have been rightly called by Cvitanovic [8-10] the ““skeleton” of chaos. It was Poincaré [11]
who first noted the central role played by periodic orbits in chaotic dynamics. A well-regarded definition of
chaos [12] requires the existence of an infinite number of periodic orbits, but periodic orbits are useful for
more than just defining chaos. The “periodic orbit theory” provides that periodic orbits embedded within a
chaotic attractor are useful in statistical characterizations of the attractor to describe such quantities as
average position, escape rates from hyperbolic repellers [13], and other averages of invariant measure by
cycle expansions [8-10]. Such summation formulae are closely related to the trace of transfer operator
formulae [14]. For Axiom A diffeomorphisms, for example, Bowen [31] proved that the asymptotic growth
rate of the number of periodic orbits is determined by topological entropy, and he went on to prove several
important results concerning the limit distribution of periodic orbits for such systems [30,32-34]. Similarly,
Grebogi et al. [15] showed that the invariant measure of hyperbolic systems can be estimated in terms of an
appropriately weighted distribution of periodic orbits, and the formulae are conjectured to hold for non-
hyperbolic systems [16,17]. There have been similarly motivated rigorous studies which prove that periodic
orbits determine the behavior of a system, including that of Katok [35] concerning the asymptotic distri-
bution and strength of hyperbolicity at periodic orbits in determining Lyapunov exponents and entropy,
and likewise discussions can be found in de la Llave [36] as well as in Ruelle [41], of the fact that SRB
measures can be characterized by Lyapunov exponents at periodic orbits in a weak limit with increasing
period. Once we have invariant measure, other quantities such as fractal dimension, and Lyapunov
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exponents can also be expressed in terms of limits involving periodic orbits. Similarly, a periodic orbit
measure (POM) property has been proven [18] for certain one-dimensional maps (“eventually onto maps’)
that invariant measure is the weak limit of unweighted averages over subsequences of the periodic orbits of
increasing order, and the property is conjectured to hold for more general dynamical systems.

Topological descriptions of the chaotic attractor are also accessible given the periodic orbits. For ex-
ample, a large set of periodic orbits is highly constraining to the symbolic dynamics, and it has been shown
that such a set can be used to infer a generating partition [19,20]. It has also been shown [21-25] that the
periodic orbits can be used to extract topological invariants via knot theoretic techniques, by associating an
appropriate template; this approach has also been used to extract a generating partition from periodic
orbits. Such analysis based on periodic orbits is physical, having been successfully demonstrated for a laser
system [21-25]. Symbolic dynamics analysis based on template analysis of periodic orbits has also been
experimentally demonstrated for an NMR laser [26] and similar techniques have been used for Belousov—
Zhabotinskii reaction data [4]. In the pruning front theory introduced by Cvitanovic [8-10], and made
rigorous by de Carvalho [37], some of the main ideas of kneading theory [42] are generalized to certain
homeomorphisms of the plane. That is, a two-parameter parameterized curve P(a,b) through a symbolic
plane representing all possible symbolic sequences of a full Smale horseshoe map [38] completely determines
the set of allowed orbits found in the non-wandering set of the Henon maps H,,, and in particular, the
complete set of allowed periodic orbits is determined. Furthermore, there is an analog of the kneading
theory concept of universal family, by which considering a candidate (periodic) orbit ordered relative to the
pruning fronts, one can understand topological bifurcation of such dynamical systems, from the simple,
toward the complicated, as the parameters (a,b) are varied.

Centrally important to accurately estimating invariant properties of a dynamical system in terms of
periodic orbits is a good algorithm to collect complete collections of such orbits, since even a few missing
periodic orbits are expected to skew results. We will focus our discussion on discrete dynamical systems
Xie1 = f (%), f 2 R" — R", which includes flows when considered by Poincaré surface of section. Finding a
period-p point, x = f(x) is equivalent to finding a root of g(x) = f?(x) — x. While low ordered periodic
points are not difficult to find, say by Newton’s method, higher ordered periodic points are numerically
sensitive, which is obvious considering two facts: (a) the derivative Df” becomes large with large p; (b) the
number of periodic orbits is expected to grow asymptotically as the exponent of topological entropy.
Techniques exist to extract periodic orbits from chaotic time-series [4,26,27] often based on close recur-
rences. Such methods are useful for time-series via the time-delay embedding technique, and reasonable
when we want one or several periodic orbits, but are not reliable when it comes to collecting complete
collections of periodic orbits.

In this paper, we will give complete convergence analysis of a recent and efficient algorithm to find
such complete sets of periodic orbits, but first we give some history. In 1989, Biham and Wenzel [28,29]
introduced an algorithm which in principle finds all periodic orbits of an arbitrary high period, but the
technique is highly specialized and usually only applied to the Hénon map. In 1997, Schmelcher
and Diakonos [2] introduced a generally applicable algorithm which apparently finds complete sets of
periodic orbits of arbitrary period. Schmelcher and Diakonos showed that a (matrix) C could be found
so that

Xpp1 = X + hCg(xr) (1)

would converge to any saddle point given a small enough number /. The iteration scheme (1) can be un-
derstood as Euler’s method for solving the ordinary differential equation

dx
T = Cel). 2)

Fixed points for the differential equation are stable if Cg has eigenvalues of negative real part, so if /4 is
chosen small enough, C can be chosen appropriately. Different choices of C stabilize points that were
saddles for the original map so that one has a better chance of finding periodic orbits for the original map.
Schmelcher and Diakonos report finding complete sets of periodic orbits for various maps [2,3].

To improve efficiency, Davidchack and Lai [1] used an almost implicit Euler method for the differential
equation (2). The implicit Euler routine for this ODE is
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X1 = X + hCg(Xpp1).

We estimate g(x;.1) = g(xx) +J (%) (1 — x;) to yield
X1 = X + hCg(xy) + hCJ (xx) (X1 — X%)

and define §:= 1/h to get
X1 — X = (BT — CJk)ﬂCgk.

Davidchack and Lai used

Xior —x = (Bllglll — CI) ™' Cgr, (3)

adding the ||g|| term which makes DH(X) = 0 at any fixed point x. This method retains the qualitative
nature of the differential equation (2) in that we can predict which C will be best for certain types of fixed
points based on the eigenvalues of Cg.

The one-dimensional case sheds some light on the behavior of the iteration scheme (3). If f = 0, then the
algorithm is Newton’s method. This modified Newton’s method still has the benefit of being super-
attracting for all >0 and C = =1, ie., if g(x) =0, then H(x¥) =X and H'(¥) = 0. Unlike Newton’s
method, we can focus on roots of different stability characteristics by means of the “switching parameter” C
as is demonstrated in Fig. 1(a). By increasing the “tuning” parameter 5, we enlarge the basin of attraction
for the roots focussed on by C, and decrease the measure of the set in which orbits of H diverge while
increasing computation time (see Fig. 1(b)).

An appealing feature of this algorithm is its apparent ability to efficiently find complete sets of periodic
orbits. There are two factors that affect its efficiency. First is the quadratic convergence in the neighborhood
of a root which is due to the fact that if x is near a root of g, then ||g|| = 0 and the algorithm is approx-
imately Newton’s method. The second factor is the choice of the seeds. The majority of the computation
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Fig. 1. (a) Roots x satisfying g’(x¥) < 0 have a large basin of attraction when C = 1. Switching to C = —1 enlarges the basin of at-
traction for roots satisfying g’'(x) > 0. (b) For the case C = 1 and for f sufficiently large, the diameter of the basin of attraction for
roots satisfying g’(x) > 0 is 2/f. Furthermore, close to roots satisfying g’(x) < 0, H(x) is bounded within 1/ of x which implies linear
convergence rates far from the root.
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time is spent finding periodic orbits that were already found or failing to converge at all. Therefore,
choosing seeds wisely can reduce computation time many times over but choosing seeds unwisely can yield
an incomplete set of periodic orbits and/or increase computation time.

The purpose of this paper is to give a rigorous convergence analysis of the Davidchack-Lai (DL)-
algorithm, which we consider to be an attractive and efficient general new algorithm to find periodic orbits.
Perhaps the two most important issues in choosing a good numerical procedure are good seeding and
stability. It is well known that Newton’s method can present very complicated basins of attraction, and
hence studying global convergence properties of even single variable (complex) functions is difficult, with
major work in this area by Smale [39,40], and can itself even present chaotic dynamics [43]. The layout of
this paper is as follows. In Section 2, we review the DL-algorithm. Then in Section 3, we give our main
convergence theorem which shows sufficient conditions for the DL-algorithm to converge, and then also
show the main importance of this algorithm is its abilities to control the size of basins of attraction. We give
several examples in Section 4, which show both strengths and failings of this algorithm, as well as various
kinds of general difficulties which can arise in searching for periodic orbits. Finally, in Appendix A, we
discuss the role played by the switching matrices, which is not in complete agreement with [2].

2. DL-algorithm

Assume that the map
fx): R — R (4)
has a chaotic orbit and that subsequently, it has a dense set of periodic orbits. Define
g=2gx)=/"(x)—x, (5)

and for typographical clarity, define

§= 50 = gt and J=J(x) = Dg = = (6)

We will assume that orbits of all periods exist so that all periodic points of period-p — 1 are used as seeds.

An algorithm [1] which finds roots of g(x) is as follows:

1. Find all fixed and period-2 points (in general, this can be done by using a fine-mesh grid to seed
Newton’s method).

2. List the 2"n! n x n orthogonal “‘switching” matrices C with only +1 non-zero entries (for example, see
Table 1).

3. Using each point of every distinct periodic orbit of period-p — 1 as a seed xy, choose a matrix C from
Table 1 and a number = ff; > 0 and generate the sequence {x;} using the iteration scheme

X1 = H(xy), (7)
Table 1
All possible values for C in one and two dimensions
1D 2D
0 1
C =1 C =1 C5:_1 0}
-1 0 [-1 0
G =-1 CZ:{ 0 1} Céz_ 0 _1
1 0 [0 1
CF[O —1} “=1 o}
0 -1 [0 —1
G = {—1 0 = |1 o}
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where
H(x) =x+[ps] — CJ]"'Cg (8)

and [ is the usual identity matrix.

4. If the sequence {x;} converges to a root of g, i.e., a periodic point of f, then iterate f'to find a complete
period of the new-found orbit.

5. Repeat the last two steps for each matrix in Table 1.

6. Repeat the last three steps for increasing values of  until we can find no more.

Remark 1. Since [fs/ — CJ]'Cg = O(B™") for f large, we expect the number of iterations required for
convergence to depend linearly on f. Experience suggests that very few convergent sequences are lost by the
following rule: assume the sequence will not converge if it fails to satisfy ||x;; — x| < & for some small
number ¢ with £ < max{100,4/}. Even if we throw out a sequence that might have converged to a periodic
orbit not yet found, it is possible for another seed to yield the same periodic orbit.

Remark 2. We always found a critical f* such that for all f > f* no more periodic orbits were found as
shown in [1]. Since we expect the number of periodic orbits to grow exponentially with the period, we also
expect f* to grow exponentially with the period. So, we can experimentally determine 8* for relatively low
periods, and then determine a rule for choosing * for high periods.

Remark 3. If there are no period-p — 1 points, Davidchack and Lai [1] proposed the following scheme. Use
an incomplete set of period-p points (found, say, by random seeding) to find period-p + 1 points. Then use
the period-p + 1 points as seeds to find the rest of the period-p points which in turn are used to find the rest
of the period-p + 1 points.

Remark 4. We found examples (see Section 4) where the DL-algorithm fails to find period-3 orbits using
the period-2 orbits as seeds. Although the period-3 orbits are relatively easy to find by other means, this
gives us reason to question the algorithm’s ability to find complete sets of periodic orbits as claimed. At
issue is whether the basins for convergence to all the period-p points contain the period-p — 1 points.

Remark 5. If the fixed points for the vector field g : R* — R? has no eigenvalues with zero real part, then
there is always a C taken from {C|, ..., Cs} so that the corresponding fixed point for the vector field Cg has
all negative real parts. So, for efficiency we can omit C; and Cg from our list in step 2 of the algorithm.
3. Convergence theorems

In this section, we begin by showing sufficient conditions under which the DL-algorithm is guaranteed to
converge to a fixed point. We then show that in one dimension, this sufficient basin grows with increasing f.

First some preliminary results are required.

Lemma 1 ([5], p. 253). If J(x) exists for all x in a convex region X C R", and if a constant y exists with
V() =J Wl <vllx =yl forallx, yecX,

then for all x, y € X, the estimate
g(x) —g) =JW)x =)l < é Il = »I1°
holds.
Definition 1. We call an n x n orthogonal matrix C with only +1 non-zero entries a switching matrix.

Lemma 2. There are 2"n! n x n switching matrices. Furthermore, ||C|| = 1 and ||Cv|| = ||v|| for any v € R".
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Proof. Standard counting arguments give the first part. Since C is an orthogonal matrix, we have CT = C~!.
So,

|CI* = max ||Cv|* = maxv"CTCv = max v"v = 1.
[[of]=1 [[ofl=1 [[ofl=1

Furthermore, since ||C|| = ||CT|| = 1, for any v € R”, we have
loll = €T Coll < ICT| - ICo] < I Coll < [Joll,

implying ||Co| = lvf. O
Definition 2. We say that C stabilizes J if all eigenvalues of CJ have negative real part.

The next result is similar to the proof for convergence of Newton’s method given in [5]. This theorem
shows that the algorithm converges for essentially any interesting map g. Note that the set inside which
orbits converge is typically small. However, the theorem allows us to be sure that regardless of our choice of
the switching matrix C or parameter f3, for ““nice” maps we will always be able to find fixed points with this
algorithm. We later show that by tightening restrictions on the map and by carefully choosing C, we can
enlarge the region in which convergence is guaranteed by increasing f.

Theorem 3. Let X be a convex set and g : X — R" be continuous and differentiable for all x € X. For xy € X
let positive constants r, o, b, y, h be given with the following properties:

So(x0) = {x: ||x —xo|| < r} C X,

h=oaby <1,
r=o/(l —h).
For typographical clarity, we further define
g = g(xi),
sk = [lg (i)l
Jk = J()Ck).

For a given switching matrix C and number = 0, let g(x) have the properties:
(i) 1(x) — J0) | <3lbx — ] for all x, y € X,
(ii) [Bs] — CJ)"" exists and satisfies ||[fs] — CJ| || <b for all x € X,
(iii) ||[Bsol — CJo]™" Csol| < o,
) If B> 0,s< 3
Then:
(1) Beginning at x,, each point

Xiepr =X+ [Bsid — CJ) 7 Cg, k=0,1,...

is well defined and satisfies x; € S,(xo) for all k = 0.
(2) limy_., x; = X exists and satisfies X € S,(xo) and g(x) = 0.
(3) The convergence rate is at least quadratic.

Proof. (1) Since [fs] — CJ]f1 exists for all x; € X, x;, is well defined for each k£ > 0. To show that
x; € S,(x0), we proceed by mathematical induction. By definition of r, k = 0 follows immediately. By as-
sumption (iii) we have x; € S,(x) for £ = 1. Now, if x; € S,(x¢) for j=0,1,2,... k, then from assumption
(i1) and the property of the switching matrix C

it — x| = |[Bsed — CJi]) ™' Cgull < b| Cel
= bHCgk —Cgi_y — CJk—l(xk _xk—l) + ﬁsk—ll(xk _xk—l)” < bIICgk — Cgj_
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=Cia ok = x1) || + Bsw—allxx — x|
=bllgr — g1 — Ji1 (ke — x| + st [lxx — xi1 |
since the definition of x; implies
Cgi — (Psid — CJ;) (xp1 — xx) = 0. 9)

Due to Lemma 1 and assumption (iv)

Y h
[+t — x| < 3 e = il 4 BBl — x| < 3 e = e 12 /ot =+ e = x|
Note that for j = 0, by assumption (iii), we have
[lx1 = xol| <,
and then for j =1,2,3,... &k we have
X2 — x| < e,
o
[lxs — xa|| < 5(h3 + 1) <ok’
o
Ixs — x3]| < §(h5+h3)<och3, (10)
xes1 — x| < ek
so by our induction hypothesis
h 2 h o k k+1
[+ — x| < 3 [k — x|/t + flxegr — x| < E(th +oh®) <ah™. (11)

By the triangle inequality and the fact that # < 1, we also have

e = Xol| < flxvesn = xell + [lve = x|+ -+ o = xol| Sa(h* + A"+ 1) < -

So, we have shown that x;,; € S,(xo).
(2) Let m = k be natural numbers. Eq. (10) and the triangle inequality imply

(1960 — x| < N = Xt ||+ [Pt = Xt | - [ — x| (k™ 4+ 0" 4+ 1Y)

k m—k—1 ok k
Set € := rh’g, and choose m and k so that m >k > k. Since 0 < h < 1, {x¢} is a Cauchy sequence in S,(xo), so
that the closure of S, (xp) has a limit point X € S,(xp). Finally, to show that g(x) = 0, note that because of
assumption (i) and the fact that x; € S,.(x,) for all k > 0

e = Joll = I (xic) = (o)l < plloee = xol| < yr
The triangle inequality implies

el < 1k = Joll + ol < v+ [IJoll =: K.
Eq. (9) and assumption (iv) further imply that

s = 1Ceell = 1(Bsel = C) et = x0)ll < (4 K) et = el (12)
So

lim s; = lim ||g;]| =0
k—o0 k—o0
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and the continuity of g in S,(x,) implies that
lim g, = [lg(®)]| = 0.

(3) Define A4; = ||x41 — x;||. Note that inequalities (11) and (12) imply

by oy h h
Ac<bs <AL +bﬁ(7+K)A§,l < {£+ﬁ(§+bK>}A,§l.

So, the convergence is at least quadratic and the proof is complete. [

Remark 6. Fig. 2 shows that the DL algorithm converges linearly until it gets sufficiently close to the root
and accelerates to quadratic convergence in agreement with (3) in Theorem 3.

Remark 7. Theorem 3 gives sufficient conditions for convergence. The sufficient region can be quite small
and is dependent on f§ and C.

An important feature of the DL-algorithm is that the size of the basin of attraction can be enlarged by
choosing a larger value of 8. The following theorem shows that the length of the interval containing x where
H(x) is increasing with a slope less than 1 is an increasing function of p.

Theorem 4. Suppose g(x) =0, g (x) # 0, and = 0. Define

Cg(x)

HE) =t o - Co )

and also define Ng () to be the open interval containing x and satisfying |H'(x)| < 1 for all x € Ny c(X). Then,
if

_ gg"(x) - [g’(X)]z2 —0 (13)
[Blg(x)| — Cg'(x)]

is well defined, then we can choose a number C* = %1 such that if 0 < f, < B, then Ng, c-(¥) C Np, c-(X).

Error vs. iterate log-log plot of next error vs. error
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Fig. 2. Convergence data for Newton’s method and the DL-method. The function used is g(x;, x2) = (x2(x; — 1/3), x;(x2 — 2)) seeded
with xo = (0.23, 1.7) which is inside the basin of attraction for ¥ = (0.3,2). The DL-algorithm uses C = Cs = —I and f§ = 25. The plot
on the left shows the distance from x; to X, 4;, as a function of k. The top curve is for the DL-method, and the bottom is for Newton’s
method. The plot on the right is a graph of log 4, versus log 4. The slope of the curve as the error goes to zero (as the logarithms go
to —oo) is the order of convergence. Both Newton’s method and the DL-method are parallel with slope 2 near the bottom, while the
DL-method has slope 1 near the top in agreement with expectations.



A. Klebanoff, E. Bollt | Chaos, Solitons and Fractals 12 (2001) 1305-1322 1313

Proof. We begin by differentiating H

¢0) (Plex)] — () — g(0) (Bl ~ Cg'(x))
Ple)] - Cg ()]

Clee'(x) ~ g P + A(¢Wlelo)] - g@lg(x)])
Blg)] - Cg (o)) |

We now consider the difference 4 := g’(x)|g(x)| — g(x)|g(x)|'. On any interval where g(x) > 0, 4 = 0. Note
that in fact, on any interval where g(x) <0, 4 = g'(x)(—g(x)) — g(x)(—g'(x)) = 0. So

H(x)=1+C

—1+C

) = 1 4 S8 @ ~ [F @I
[Blg(x)| — Cg'(x))*

and the bound in (13) implies that A’ (x) is well defined and satisfies |H'(x)| < 1 on Ny c(¥). Now, let 5, < ;.
Case 1: g'(x) < 0. Choose C = 1. Suppose x € Ng, ;(X). Then

_ 80" ) — [f ) _ g)g"(x) — [g )

[Balg()| = Cg'x)]* ~ [Bilg(x)| — Cg' ()]’

since 0 < f,|g(x)| — Cg'(x) < f|g(x)| — Cg'(x). Therefore, x € Ny, 1(%).
Case 2: g'(x) > 0. Choose C = —1. Similar to case . O

<0,

Theorem 4 does not generalize in higher dimensions. This is due in part to the fact that the inverse of
ps — CJ is a quotient of two functions of f§ while in the one-dimensional problem, f arises only in the
denominator.

The contraction mapping theorem guarantees any point x satisfying ||0H /x|| < 1 will converge to a
unique fixed point contained in the set.

Remark 8. Unfortunately, the following is not true. Define the neighborhood of a fixed point of g by
Npc(x) = {x : ||0H /ox|| < 1}. There exists a C so that 0 < f5, < 5, implies Ng, ¢+ (¥) C N, ¢+ (X).

We can show it is not true by example. We compute the derivative of H(x) = x — [fis] — CJ ]_ICg for the
simple function g given in Section 4.1. By writing the derivative symbolically

oH -1 ﬁS T oJ —1

L poy=ipsi—cn | (102 JfC—( 1—CJ 1)(: 1) + psi |,

e .0 = st - o (1 gy = ) (b1 - o) @) (e 1)+

where “®” is the Kronecker product, it is easier to graph the curves 0H /0x = 1 in the x;x,-plane for various
values of f8. Since there are only eight Cs to check, we must produce only 16 graphs to verify that the result
does not hold.

Remark 9. It is natural to compare the DL-algorithm with Newton’s method since f = 0 yields Newton’s
method. On the other hand, the DL-step-size decreases with increasing f§ once f is sufficiently large, say
when = f > 0. Since an iteration scheme that takes smaller steps is less likely to over-shoot the targeted
root, we also compared the DL-algorithm with a quasi-Newton method in which before each Newton step,
J'gi, is taken, we check that ||gi (]| < ||gk]. If not, we try steps of 277J'g, for j=1,2,... until
llgrr1]l < |lgk||- Typically, we find larger convergence basins with quasi-Newton than with Newton, but we
never find that quasi-Newton has large enough basins to permit the seeding technique of DL. We state this
more precisely in the next remark.

Remark 10. Experience suggests the following: although we have been unable to verify it in general: Let
Spc(x¥) = {x¢ : x4 — x using the DL iteration scheme}. Then, let S;(x) be the largest simply connected



1314 A. Klebanoff, E. Bollt | Chaos, Solitons and Fractals 12 (2001) 1305-1322

subset of Sy (%) containing ¥ (S (¥) can be disconnected because of the large initial steps). Then, there
exists a switching matrix C* such that > 0 implies that Sy ¢ (¥) C Spc-(¥). In other words, the DL-
algorithm always provides a larger basin of convergence than Newton’s method. The same appears to be
true for a quasi-Newton scheme.

4. Examples

We show through examples that the DL-algorithm for finding periodic orbits is quite a general root
finding technique that finds periodic orbits — stable or not. In fact, while Schmelcher and Diakonos
originally used their switching matrices to determine the type of instability of an unstable periodic orbit
(UPO) found, the switching matrix does not generally tell us the stability type of the orbits it will find
with the DL-algorithm. Both SD [2] and DL [1] report that the majority of periodic orbits are found
with C; = [. For the DL-algorithm, there is nothing inherently special about C; = I except that it is the
first switching matrix used. In fact, if we used C, first, we should expect that most periodic orbits
would be found by it. For a particular map, there are switching matrices that will most efficiently find
the periodic orbits, but there is no way in general to determine which those are. In 1 and 2 dimensions,
one can easily show on a case-by-case basis that all fixed points of the vector field Cg can be stabilized
by the Cs listed in Table 1. We do not know if this is true in general, but we have found no examples
to the contrary.

4.1. A simple map

The following example was designed to show application of the preceding theorems, and so it was
constructed to simplify checking each condition of Theorem 3. Let

gx) = (14)

{gl(XI;XZ) = x(x—1/3),
gz(xl,xz) = xl(xz — 2)
Our main objective is to find periodic orbits of maps. So, we think of g as the function whose roots are fixed
points of f(x) = x + g(x). In this case, f has two fixed points: x = (0,0), a saddle with corresponding ei-
genvalues 1+ 1/3v/6 and 1 — 1/3v/6 and x = (1/3,2), a source with corresponding eigenvalues 3 and 4/3.
Equivalently, g has roots £ and X with corresponding eigenvalues 1/3v/6, —1/3v/6 and 2, 1/3, respectively.
Since g; and g, are quadratic in their variables, we expect the boundary separating the basins of attraction
for the two roots to lie close to the curve det(J) = 0, where J is the Jacobian matrix of g. In this case,
det(J) = 0isx, = 2 — 6x;. Fig. 3(b) shows how det(J) = 0 splits the plane as well as the basins of attraction
for the two roots of g under Newton’s method. The quasi-Newton method produces identical convergence
basins for this example. In more complicated maps, the quasi-Newton typically has larger convergence
basins than for Newton’s method. The DL-method stabilizes the root for the vector field. As we see in
Figs. 3(a) and 4, neither root is stable for g, but the origin % is stable for Csg and the non-trivial root x is
stabilized for Cgg. It is quite noticeable how much larger an appropriate choice of C can make the basin of
attraction for a particular root.

4.2. Julia set for quadratic map

The chaotic set need not be attracting. The Julia set for Q(z) = z*> — 0.13 + 0.76i, the boundary of the
black region shown in Fig. 5(a), has a dense chaotic repeller. Since Q is a one-dimensional polynomial, there
are exactly 27 period-p points making this a prime candidate for testing the reliability of the DL-algorithm.
The method succeeds despite having only sources and a single sink for the zeros of g(z) = 0”(z) — z,
p=1,2,... As always, we can view the “skeleton” of the chaotic set by plotting its periodic orbits as shown
in Fig. 5(b).
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Vector Field and Phase Portrait for g. Newton Method
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Fig. 3. (a) Regions are bounded by nullclines of g in Section 4.1 and color coded by the sign of g; and g, to make it easier to see the
directions of the vector field flow. The origin is a saddle and the non-trivial root is a source. (b) Seeds (points in the plane) are colored
blue if Newton’s method converges to the non-trivial root (white dot) within 40 iterations and red for the origin (yellow dot). We also
superimposed the line det(J) = 0. The quasi-Newton method produces the same basins for this simple map.

Vector Field and Phase Portrait for C<g Vector Field and Phase Portraitfor Cg
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Fig. 4. The origin is stable in the vector field Csg, and the non-trivial root is stable in the vector field for Cgg. But, since switching
matrices only swap the order and switching signs in g, the nullclines of any vector field Cg are always the same.

4.3. The standard map
We studied the DL-algorithm for various values of parameter K in the standard map

K .
X = (xkl — E sm(2nyk1))mod 1,

Vi = (xk —I—yk,l)modl.
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Julia set for z2-0.13 +0.76¢
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Fig. 5. (a) The Julia set for z2 — 0.13 + 0.76i is the boundary of the black region. All points in the black region but not on the boundary
are attracted to a stable period-3 orbit. All points outside the black region diverge to infinity. Almost all points on the boundary lie on
a chaotic orbit — so this is where we find all periodic orbits except for the attracting period-3 orbit. (b) The 986 prime period-10 points
of the Julia set for z2 — 0.13 + 0.76i.

A typical case in which chaotic sets coexist with KAM-like invariant circles is K = 1.25 [7]. One typically
expects that for large enough values of f the DL-algorithm will succeed as long as we wait long enough. In
this case, however, we find that while Newton’s method fails to find as many UPOs as the DL-algorithm
does, that we do best for very small f§ values and find ourselves gradually finding fewer UPOs as we increase
p in stark contrast to the behavior of the algorithm reported in [1]. Since large f gives small steps for the
DL-method, orbits become trapped in invariant regions containing their seed, potentially blocking them
from unfound roots. Furthermore, seeding only with period-2 points will not yield any period-3 orbits —
regardless of C or f§ so we generate seeds by following a chaotic orbit. Although the quasi-Newton method
has much larger convergence regions than Newton’s, it too fails to find the four period-3 orbits when seeded
with only the period-2 points.

4.4. The Tinkerbell map

Nusse and Yorke [6] reported finding 64 period-10 UPOs using a quasi-Newton method in the Tinkerbell
map

Sfi(x1,x2) = x3 —x3 + 0.9x; — 0.6013x,,

70 ={
fg(xth) = 2X1X2 + 2)61 + 0.5)62.

The quasi-Newton method fails to find the majority of period-p points when seeded with the period-
p — 1 points. In contrast, the DL-algorithm only fails to find the period-3 orbits from the period-2 seeds,
but starting from period-3, it appears to find complete sets of UPOs of all higher periods. So, millions of
randomly chosen seeds are required for the quasi-Newton routine to find the period-10 orbits, while the
DL-algorithm uses only the 9 x 56 = 504 period-9 points as seeds and exploits the larger basin of attraction
that the right switching matrix provides. With six switching matrices, we require only 3024 applications of
the DL-iterator to find 101 period-10 UPOs making the DL-algorithm a much faster routine.

4.5. A problem with the seeding algorithm

Here is a simple example to illustrate why we often have to modify the approach of seeding with previous
orbits. Consider the map

f(x)=10x modl, 0<x<1.
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After finding the nine fixed points and 90 period-2 points, the DL-algorithm proceeds as follows. We use
each of the 90 period-2 points as seeds, once with C = 1 and again with C = —1 and start with an arbitrary
but small value of § = f§; = 0. We then repeat this process for an increasing sequence of f-values and record
the number of period-3 UPOs found as a function of 5, N3(f5). The graph of N;(f) versus f§ will typically
level off after which we assume that we have found all of the periodic points. In this case, however, the
method will find at most 90 x 2 = 180 UPOs or only 3 x 180 = 540 out of the 990 period-3 points. The
cause of this problem is overcome if p > 4, but one can similarly construct higher dimensional baker-like
maps in which the number of UPOs must grow too fast early on to be seeded by the UPOs of the previous
period. Such considerations make it likely that the transformations which Kaloshin [44] has recently shown
produce superexponential growth of the number of periodic orbits can produce difficulties for the DL-
seeding scheme.

5. Conclusion

In this paper, we have given a rigorous analysis on convergence properties of the DL-algorithm which
finds periodic orbits. We have shown that we generally expect the root finder to converge, the only matter
being to which root. We have shown that a sufficient basin of attraction has a size which is adjustable with a
control parameter  which we consider to be one of the algorithms most attractive features. We have also
shown the asymptotic rate of convergence to be quadratic. Furthermore, we have given many examples
which show the general utility of this algorithm. We suggest that this algorithm should also become the
general root finder in numerical analysis settings in which: (1) there are many roots to be found and thus the
flexibility of different seeds and different switching matrices improves success in finding all of them, (2) speed
is an issue. In our numerical experiments, we have reported that experience suggests that the algorithm’s
most attractive feature is even better than we can rigorously prove. It seems that the basin of attraction of a
given fixed point usually increases significantly with appropriately chosen f§ control parameter, although
our experience with the standard map suggests that such statements cannot be general. In future work, we
plan to investigate an appropriate probabilistic measure which says roughly that the chance of choosing a
convergent seed increases monotonically with f.
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Appendix A. Are involutary matrices important?

When Schmelcher and Diakonos [2,3] described their method for finding UPOs, they seemed to imply
that involutary matrices C, i.e., matrices satisfying C> = I, played a role in their technique. They inferred
that switching matrices are involutary (not all of them are). Furthermore, they used a result that applied to
certain involutary matrices and implied that this would also follow for the switching matrices. We complete
and correct their arguments below.

The proof of a theorem similar to the following was sketched by Schmelcher and Diakonos [2]. We
complete and generalize it enough to show that it does not easily follow from this theorem that switching
matrices and involutary matrices are related as suggested by Schmelcher and Diakonos.

Theorem 5. Let J be an arbitrary n x n invertible matrix with n distinct eigenvalues: Ay, 2y, ..., A, corre-
sponding to eigenvectors vy, vy, ...,0,. Then, there exists a matrix C satisfying:

(i) C? = al (for some positive constant a);

@i [Cl =1;

such that every eigenvalue of CJ has negative real part.
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Proof. Let 4 = CJ. Since J has n distinct eigenvalues, it is diagonalizable by a similarity transformation P
PP = A :=diag{/, A2, ..., 7}

So
P'4P = P7'CJP = P7'CPA. (A.1)

Construct the diagonal matrix Cp = diag{ci,c,,...,c,} as follows:

_{ I if Re(4) <0,
ST -1 if Re(k) >0

and find C satisfying Cp, = P~'CP. Define C = C/||C|| so that ||C|| = 1 and C? = C?/||C||* = PC3P~'/||C|]®
= PIP™'/||C||* = al where a = 1/||C||*. Finally, since

1 C
plcP=—r'PCpp'P=—"2
IC| ? IPCoPT]

Eq. (A.1) implies that 4 = CJ is similar to a diagonal matrix with all negative entries on the diagonal. [

Remark 11. The matrix C in Theorem 5 is involutary but does not in general have norm 1. Since all
switching matrices have norm 1, the question we now seek to answer is whether we can use the method of
proof in Theorem 5 to construct a switching matrix given (generic) arbitrary J. The corollary that follows
shows that eigenvectors of CJ and J are the same if C is constructed as in Theorem 5.

Remark 12. In the construction of Cp in Theorem 5, generalize

Ci

|C[| if Re (ll) < 07
—|Ci| if Re (i,) > 0,

so that {Re(c;4;), i =1,...,n} are distinct. The result in Theorem 5 still holds.

Corollary 6. If the eigenpairs of J are (1, v;), then the eigenpairs of CJ are (£al;,v;) with a = 1/||C|| where
we choose “+” if Re(4;) < 0 and “—"" if Re(4;) > 0.

Proof. Since the eigenvalues and eigenvectors for J collectively satisfy JP = PA,

1
(CJ)P = CPA =—PCpP 'PA = P(aCpA). O

Il

Theorem 7. Assume J is an n x n matrix with n distinct eigenvalues, none of which have zero real part.

1. If all eigenvalues of J have negative real part, then C = I stabilizes J.

2. If all eigenvalues of J have positive real part, then C = —I stabilizes J.

3. Let P be a matrix of eigenvectors for J, and let Pc be a matrix of eigenvectors for a switching matrix C. If J
has eigenvalues with both positive and negative real part, then we can only construct a switching matrix
from Theorem 5 if each column of P is parallel to a column of Pc.

Proof.
(1) J is already stabilized so the result is immediate.
(2) Let P and A = diag{4, 4s, ..., 4, } be a matrix of eigenvectors and corresponding eigenvalues, respec-

tively. Then JP = PA, so (—I)JP = —1-IPA = P(—A). So, C = —I stabilizes J.
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(3) Let P- and A be a matrix of eigenvectors and corresponding eigenvalues for a switching matrix C
(other than +7) so that CP- = P-Ac. Note that since J has n distinct eigenvalues, that it also has # dis-
tinct eigenvectors. Subsequently, any matrix (S, D) pair satisfying CS = SD where D is diagonal must be
matrices of eigenvectors and eigenvalues. So, the following must be true in order for CP = PCp:

(1) Cp = aAc for some constant «;

(i1) each column of P is parallel to a column of P.. [

Example 1. With probability zero will the columns of P and P¢ be parallel. So, if we randomly construct J
with the constraints that it will have distinct eigenvalues with non-zero real part, Theorem 5 will fail to
produce a switching matrix. For example, let

-1 =2
J [_3 _2}
Then

-1 2 1 0
P:[ ) 3} and A:[O _4}

We construct

1 0
=170 1]

and then find

c__ 5 [-1 2][=1 0][=3/5 2/5]___ 1 [-1 4] _[-0.163% 0.65584
V61l U 3L o )| 15 15 T /aee1 6 1] 7| 098376 0.16396 |

which is not a switching matrix.

Example 2. Here is an example of a rare case when Theorem 5 permits a switching matrix that is neither 7
nor —/. Let

[—3/2 —25/4}
-1 =32 ]

[—2 5 1 0
P__ 5 5} and A_[O _4}

By Theorem 5,

1 0]
CD:{ 0 1

so that

e[ 30008 0 -1 8]

Note that
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1 -1 1 0
PC_{l 1} and Ac—{o _1]

so that the two required conditions are met in step 3 of the proof.

Remark 13. Schmelcher and Diakonos seemed to imply that Theorem 5 guaranteed that there is always a
switching matrix that can stabilize J. Subsequently, Davidchack and Lai continued to use the switching
matrices without showing concern for this issue, but Theorem 7 shows this is not always possible.

Remark 14. The theorems of this section do not guarantee that there is always a switching matrix for an
arbitrary diagonalizable J. However, we have yet to find an example of a matrix J that cannot be stabilized.
Consider, for example, the 5 x 5 matrix

1 -3 0 -2 5
3 2 5 -7 1
J=12 8 1 0 -4,
4 9 -2 3 0
4 4 7 -4 3

whose five eigenvalues are

A = —0.4387597197,
J23 = 0.08849259349 + 5.728217720i,
Aas = 5.130887266 + 5.061384383:.

Theorem 5 will not yield a switching matrix. However, we can easily find a switching matrix by noting two
important facts:

(1) Switching matrices permute and switch signs of rows of the matrix they multiply on the left.

(2) Eigenvalues lie inside Gershgorin circles whose centers are given by the diagonal entries.

If the diagonal entries of J are large enough in magnitude and negative, then we should get negative
eigenvalues. The largest magnitude entry is the 9 in row 4, so at first one might try moving row 4 to row
2 and switching signs. However, by doing this we cannot make use of the 8 in row 3 which will guarantee
us a negative eigenvalue once it is negated. So, we first move row 4 to 1 and 3 to 2 and negate rows
placing —4 and —8 on the diagonal. We next move row 5 to row 3 and negate to place a —7 on the
diagonal. Finally, we can move row 2 to 4 without any sign change, and row 1 to 5 with a sign change.
The switching matrix

00 0 -1 0

00 -1 0 O

C= 00 0 0 -1
01 0 0 O

-1 0 0 0 O

does this and stabilizes J since

-4 -9 2 -3 0

-2 -8 -1 0 4
CJ=|-4 -4 -7 4 3
32 5 -7 1

—1 30 2 -5

has eigenvalues
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A1y = —11.40252568 + 2.4078360611,
Az = —4.883901295,

Ja = —2.925593730,

As = —0.3854536062.
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