
Portable High Resolution Accelerometers (HRA) for the Estimation of VO2 in 1 

Highly Trained Inter-collegiate Distance Runners. 2 

 3 

Abstract 4 

Background: Accurate quantification of training load is important to optimize training in 5 

any sporting discipline.  In running this is problematic, but high resolution 6 

accelerometers (HRA) may be of value.  Since workload is proportional to VO2 in 7 

running, the objective of this study was to determine the relationship of HRA and VO2 in 8 

highly trained inter-collegiate runners.  Methodology: Runners performed 2 incremental 9 

VO2max trials while wearing HRA affixed to the lower back.  RMS of high frequency 10 

unfiltered signal from three axes (VERT, LAT, A/P) and the Euclidean resultant (RES) 11 

were compared to VO2.  Also, test-rest correlations were determined for each axis and 12 

RES to determine reliability of this approach.  Principal Findings: RMS of acceleration 13 

in g’s for each axis were significantly correlated to VO2 (0.868-0.945).  Importantly, a 14 

single linear regression best described the strong VO2 to RES relationship (R = 0.95) 15 

across the speed spectrum including both walking and high speed running. This single 16 

regression did not require correction for individual characteristics such as heart rate.  17 

High reliability was also observed with RES (ICC = 0.99; CV = 5.1). 18 

Conclusions/Signficance:  Results of this study indicate that HRA can accurately and 19 

reliably predict VO2 during treadmill locomotion in highly trained runners.  20 

 21 

Introduction 22 

Standardized quantification of mechanical (e.g. cycle ergometry) or metabolic 23 

(indirect calorimetry; VO2) work has been performed in the laboratory setting for over a 24 

century (3).  Often athletes and/or coaches may take principles determined from 25 

laboratory testing (e.g. lactate threshold) and apply them in the field.  Historically 26 

though, in disciplines such as cycling and running, there has been no way to quantify 27 

work performed in the field as accurately and reliably as in the laboratory.  Heart rate 28 

monitors have been used extensively in an effort to estimate metabolic work from 29 

estimates of oxygen consumption, but these devices have numerous limitations 30 



(reviewed in (1)).   Recently, there has been a revolution in the discipline of cycling with 31 

the advent of portable on-board power meters (4, 15, 19, 39, 40).  These devices 32 

provide laboratory quality data, and enable coaches and athletes to more effectively 33 

quantify training loads and evaluate training/racing efforts than with heart rate monitors.  34 

Also, portable power meters provide objective criteria (e.g. watts or Kj) for rational 35 

progressive training overload based on specific effort based criteria obtained from 36 

competition (39, 40).   37 

 38 

 In the discipline of running, there is currently no device that serves the same role 39 

as the power meter in cycling.  It has been demonstrated that power can be derived 40 

from running on a track (6, 11), but due to changes in grade and difficulty in accurately 41 

quantifying distance, this cannot be extended to running on open, varied terrain.  Efforts 42 

have been made to utilize global positioning system (GPS) devices to account for 43 

changes in grade and the resulting change in energy expenditure relative to speed (26), 44 

but these devices have lower resolution than true power meters, and some problems 45 

inherent to the technology have yet to be resolved (e.g. altitude errors, errors on curved 46 

courses) (10, 35).  A possible candidate that might serve as a “power meter” for 47 

running, is the accelerometer.  The use of accelerometers to measure human 48 

movement has increased greatly in recent years (9, 36, 41), but, from a physiological 49 

perspective, they have commonly been used as “activity monitors” for the course-50 

grained measurement of gross movements.  In many cases, the goal of using these low 51 

resolution accelerometers has been in attempt to objectively determine energy 52 

expenditure during free living non-formal activities (37).  Due to the discretized nature of 53 



the data obtained from activity monitor accelerometers, numerous studies have been 54 

performed in attempts at developing regression equations to fit activity counts obtained 55 

from these devices to other measures of metabolic work (e.g. VO2 and/or doubly 56 

labeled water) (38, 41, 42) .   Although clinical/epidemiological studies are numerous, 57 

there have been few attempts to use this approach in athletic populations in order to 58 

objectively quantify external work of a dynamic activity such as running.  Fudge et al. 59 

(14) did investigate the relationship between activity monitor accelerometers and VO2 in 60 

trained runners, but determined that a correction for HR was necessary to obtain strong 61 

correlations.  Further, some of the accelerometers tested would not show a strong 62 

correlation with VO2 during running even with a correction for HR (14).  So, although the 63 

utility of accelerometer based activity monitors for the measurement of “work” in running 64 

has been investigated with some success, it might be expected that resolution could be 65 

improved relative to this approach (i.e. higher resolution, greater accuracy), and in turn, 66 

with higher resolution, greater accuracy relative to other measures such as VO2 might 67 

be obtained.  Further, in an activity such as running, portable accelerometers might not 68 

only serve as ergometers to measure work, but some insight might be gained by using 69 

the high frequency signal from such a device to examine running mechanics collected 70 

during “real world” activities such as racing and training.  Low resolution “activity 71 

monitors” do not provide this capability.     72 

 73 

  Accelerometers have been used in the field of biomechanics for decades (8, 29) 74 

for the purposes of gait analysis.  In contrast to “activity monitors” used for 75 

metabolic/activity studies, these devices generally collect data at higher frequencies in 76 



continuous, as opposed to discretized fashion and as such, provide higher resolution.   77 

The high resolution accelerometers (HRA) provide some advantages over traditional 78 

approaches (e.g. force plate analysis or inverse dynamics), in particular,  HRAs are 79 

portable, light, and generally can be used to either stream data at high frequency in real 80 

time, or datalog similarly high frequency signals collected during “real world” activities of 81 

locomotion that would not be possible using other means.  Although HRA used for gait 82 

analysis have previously been limited by data storage capacity and portability, with the 83 

recent innovation of microelectromechanical system (MEMS) accelerometers, the 84 

aforementioned advantages may be exploited to a greater extent.   85 

 86 

 Since the current technology exists to measure acceleration in a high frequency, 87 

high resolution manner using portable devices, it would seem that this might be an 88 

interesting way to determine work/energy expenditure in running, while at the same time 89 

collecting data with regard to the gait characteristics of the individual.  As a first step, 90 

the validity of such high resolution accelerometers (HRA) should be compared to an 91 

objective physiological measure such as VO2 and/or running speed.   Therefore, it was 92 

the objective of this study to examine the potential utility of HRA to quantify workload in 93 

trained intercollegiate cross country runners by determining 1) the relationship of the 94 

HRA signal with VO2 and speed and 2) the test – retest reliability of HRA across a wide 95 

range of walking/running speeds.  It was anticipated that since course-grained activity 96 

monitor based accelerometers  have demonstrated reasonable correlations with VO2, 97 

and high frequency accelerometers have demonstrated validity and reliability against 98 

force plates, HRA units should provide good correlations with VO2 and be indicative of 99 



the mechanical work in treadmill locomotion in trained runners.    Further, examples are 100 

provided where raw signal from HRA can provide insight into the mechanics of running 101 

on an individual basis.   102 

 103 

METHODS 104 

 105 

Subjects  106 

Nine male NCAA Intercollegiate Division 1 runners (Table 1) gave written 107 

informed consent to take part in this study, which was approved by the local Human 108 

Subject Review Board. 109 

Experimental Design 110 

Subjects completed two continuous, incremental exercise tests on a motorized 111 

treadmill (True ZX-9, St. Louis, MO) with at least 6 days separating each trial.  Exercise 112 

tests were performed to volitional exhaustion while high resolution triaxial acceleromety 113 

(HRA) and metabolic gasses were collected to determine relationships between, HRA, 114 

VO2, walking and running speed.  In addition, validity and reliability of the unfiltered, 115 

HRA was determined.   After the first trial, two subjects could not complete a second 116 

trial due to injury.  Data for these subjects was therefore not included in the reliability 117 

analysis, but was used for correlations and regression curve fits. 118 

Procedure 119 

Subjects reported to the laboratory on the day of examination after a 3 hr fast 120 

and having refrained from strenuous exercise, alcohol, and caffeine for 24 hours prior to 121 



the day of testing.  Height and body mass were measure upon arrival at the laboratory 122 

(Mettler-Toledo, OH). 123 

Incremental exercise test to volitional exhaustion 124 

In each of the two tests, subjects began walking at 2km/h and speed was 125 

increased 2km/h every two minutes until volitional exhaustion.  The treadmill grade was 126 

held constant at 1% to simulate normal over-ground walking/running.  During tests, 127 

metabolic data was collected on a breath-by-breath basis using portable open circuit 128 

spirometry (Jaeger Oxycon Mobile, CA).  VO2max was determined as the highest 30s 129 

average of the test.  130 

Metabolic Measurements 131 

Indirect calorimetry was used to collect breath-by-breath measurements of VO2 132 

and VCO2 using electrochemical oxygen measuring cell (SBx) in an Oxycon Mobile 133 

(Cardinal Health, OH) and averaged over 5 sec.  Heart rate was collected continuously 134 

via telemetry using a Polar coded transmitter belt (Polar t-31, Polar Electro, Oulu, 135 

Finland).  The oxygen and carbon dioxide sensors were calibrated prior to each test for: 136 

ambient conditions (temperature and barometric pressure), volume and gas content 137 

against precision analyzed gas mixtures. 138 

Accelerometry 139 

The HRA device, a triaxial MEMS accelerometer model ADXL210 (G-link 140 

Wireless Accelerometer Node ± 10g Microstrain, Inc., Williston, VT) was placed 141 

anatomically at the intersection of the sagittal and axial planes on the posterior side of 142 

the body in line with the top of the iliac crest in order to approximate the center of mass 143 

(28). The accelerometer was mounted to a semi-rigid strap and additionally secured 144 



with elastic tape in order to any extraneous movement not associated with locomotion.  145 

Acceleration in g’s was streamed in real time using telemetry to a base station at a 146 

frequency of 625 Hz.   147 

Data Analysis 148 

Raw accelerometry signal (in g’s) was saved in Agilelink software (Microstrain, 149 

VT) and exported to Signal Express software (Labview, TX) in ASCII format.  Full length 150 

files were parsed into 1 min segments, and the last one minute of each treadmill stage 151 

was used to calculate Root Mean Square (RMS) value using Signal Express for each 152 

axis, vertical (VERT), lateral (LAT), anterior/posterior (A/P),  and Resultant (RES).  The 153 

RES value was calculated according to the equation 154 

 155 

RESxyz
2 = (ix)2 + (jy)2 + (kz)2 (Equation 1) 156 

 157 

Where x, y and z equal the Vertical, Lateral and Anterior/Posterior axes, respectively.   158 

 159 

 The 1 minute RMS of acceleration were generated using Signal Express and 160 

compared to the 1 minute average of VO2 for the last minute of each corresponding 161 

stage.  Comparisons were made using Pearson’s product correlation, RMS of raw 162 

signal were also compared to VO2 using a linear regression curve fit.  Validity and 163 

reliability of the HRA were determined by calculation of coefficient of variation (CV), 164 

test-retest reliability (R) and Interclass Correlations (ICC) (SPSS, IL; α=0.05). 165 

 166 

   (Equation 2) 167 



 168 

Results 169 

 170 

Correlations 171 

 172 

Significant correlations were observed between RMS of raw acceleration of each 173 

of the axes, as well as VO2 (Table 2).  Although all correlations were highly significant, 174 

the strength of the correlations varied with A/P and RES most highly correlated to VO2, 175 

and to a similar extent (Table 2).   176 

 177 

Regressions  178 

 179 

Results of regression curve fits of accelerometry vs. VO2 can be seen in Table 3 180 

and Figure 1 (a-d).  Linear, quadratic and cubic regressions were attempted for VO2 181 

against each axis, and in all cases, quadratic and cubic regressions were not more 182 

significant than linear.   It is readily apparent that the prediction of VO2 when regressed 183 

to the VERT axis exhibited the weakest relationship across the entire range of speeds 184 

tested.  When VO2 was regressed against A/P and RES, similarly strong R values were 185 

observed, although the RES was much more significant as evidenced by the F values 186 

(Table 3).  The strong linear relationship between VO2 and RES can be seen when 187 

comparing the plot of RES vs speed in Figure 2 d and VO2 vs speed in Figure 3.  Both 188 

plots show a clear change in VO2 and RES at the walk to run transition occurring 189 

between 6 and 8 km/h.  Above and below this transition, both variables exhibit a similar 190 



relationship to speed.  This bimodal response to speed has been well established with 191 

regard to VO2 (24), and confirms the observation in the current study.   192 

 193 

Reliability 194 

 195 

 The reliability of the HRA and VO2 instruments used for this study are presented 196 

in Table 4.  It can be seen that the test-retest reliability was quite high for all axes, but 197 

highest for RES, which was comparable to VO2.  Further evidence of the reliability of 198 

using RES is demonstrated by the CV which was also on par with VO2.  On the other 199 

hand, CVs were quite high in the LAT and A/P axes.  This may be due to the well known 200 

sensitivity of CV as mean values approach zero.  In the case of both Lat and A/P, 201 

means were much closer to zero than in VERT and RES, yet, the variance was quite 202 

high for both axes.  Therefore, the high CVs in this case may be an artifact associated 203 

with the nature of the data.   204 

 205 

Discussion 206 

 207 

 The present investigation is the first to report the relationship of HRA to VO2 at a 208 

range of walking and running speeds, including maximal aerobic speed, in highly trained 209 

runners.  It was determined that the RMS of the RES acceleration value calculated from 210 

the three individual axes exhibited a strong correlation with VO2 (Table 2), strong 211 

internal validity (Table 3) and strong test-retest reliability (Table 3).  These data indicate 212 

that HRA may prove of value for monitoring training load in trained runners in similar 213 



fashion to portable HR monitors, while providing additional information on gait 214 

characteristics, and changes in speed with high accuracy.   215 

 216 

Correlations 217 

  218 

 Previous work by Fudge et al. (14) examining the utility of accelerometers for the 219 

assessment of running workload relative to VO2 in trained runners at high running 220 

speeds (8-18 km/h) showed some promise.  They reported reasonably strong 221 

predictions of VO2 in walking and running with a triaxial activity monitor accelerometers, 222 

but these strong relationships required correction using HR.  In the current study, no 223 

correction for HR was examined, and yet, stronger relationships were observed than in 224 

the Fudge et al. study when VO2 was regressed to RMS of accelerometer signal, in 225 

particular, when regressed to RMS of RES (Figure 1d).  The stronger relationships 226 

between VO2 and RES observed in the present investigation are presumably because 227 

of the higher resolution of the HRA devices used.  In the case of activity monitor 228 

accelerometers such as those used for the Fudge et al. study, considerations such as 229 

the thresholds for determining activity counts, as well as filtering bands applied are 230 

important (9, 25, 41).  In the case of HRA, the continuous signal “captures” all 231 

movement, and more complete information regarding the movement is collected.  232 

Additionally, it should be noted that in the current study, no filtering was applied to the 233 

signal as to avoid losing sensitivity at lower exertion levels (e.g. 2 kph).  Therefore, if 234 

used in athletes where sensitivity to low level activity is of little interest, it is plausible 235 

that stronger relationships between HRA and VO2 could be obtained by the use of 236 



different filtering strategies.  On the other hand, if this technology were employed for 237 

activity monitoring in other situations, the strong relationship observed in the present 238 

study demonstrates the sensitivity that can be achieved with HRA at low activity levels 239 

with little or no filtering.  Therefore, the use of HRAs may be more broadly applicable for 240 

estimation of VO2 and/or energy expenditure than simply in trained runners, but this will 241 

require further investigation.   242 

 243 

Recently, Halsey et al. (17) used a similar approach to the current investigation 244 

by mounting HRA on the lower back (as well as other sites) of humans and reported 245 

strong relationships with VO2 (l/min) during walking and running.  In contrast to the 246 

current study, they used absolute VO2 (l/min) as the criterion measure, and as such, 247 

relationships were improved by adding subject weight as a covariate in regression 248 

analysis.  In the current investigation, the use of relative VO2 (ml/kg/min) as the criterion 249 

inherently corrects for bodyweight, and therefore strong correlations were observed and 250 

VO2 was strongly predicted by acceleration when regressions were performed using 251 

only relative VO2 and RMS of RES.  Another interesting contrast between the Halsey et 252 

al. and the present study is the fact that Halsey reported two separate regressions 253 

equations for walking and running, whereas in the current study, it can be seen in 254 

Figure 1d that the same regression of VO2 to RMS of RES showed a strong relationship 255 

(r = 0.95).  This is of interest because the use of a single regression equation simplifies 256 

data analysis and interpretation by negating the requirement of distinguishing walking 257 

and running activities.   258 



Neither of the aforementioned studies investigated reliability of the devices used, 259 

and the reproducibility of their measures within subjects.  Importantly, we show in the 260 

present investigation that HRA is not only valid relative to VO2, but also reliable on re-261 

test.  This is in comparison with a report from Henriksen et al. (18) in which HRA 262 

mounted to the lower back and RMS of vector sum derived values exhibited ICCs of 263 

0.81-0.85.  In the current study, the ICCs for the analogous RES were higher  (0.99; 264 

Table 4).  Although CVs of individual axes A/P and Lat were higher in the present study 265 

(Table 4) than in the Henriksen et al. (18), they were within generally acceptable range 266 

for the VERT, and importantly, the RES.  This is a serious consideration if HRA is to be 267 

used as a device to monitor training load across multiple workout sessions, or over 268 

extended periods.  Also, from a practical perspective, it seems that if the HRA are not 269 

mounted in the exact same orientation on different occasions, the RES should not be 270 

dependent upon orientation, and therefore, the RES should be robust for determination 271 

of workload over the span of multiple workout sessions.     272 

 273 

 Potential applications of this work are significant on several levels.  First, the use 274 

of HRA in the same sense as a traditional, downloadable HR monitors for the 275 

quantification of global training load becomes readily apparent, while HRA would not be 276 

susceptible to some of the limitations to HR (e.g. dehydration, psychological motivation 277 

etc) (1).  This could be of particular value for the application of performance modeling 278 

approaches such as the training impulse (TRIMPS), with the use of a work output based 279 

metric as opposed to HR.  The TRIMPS system have been used extensively in various 280 

sports (2, 12, 31, 34), including running (31).  HR has been quite convenient with the 281 



advent of downloadable monitors, but poses some limitations with regard to its 282 

dependence on environmental conditions (e.g. cardiac drift), lag with efforts, and the 283 

fact that it cannot account for supramaximal efforts (1).  Therefore, a metric that is more 284 

responsive to efforts, particularly at high intensities, and is not influenced by 285 

environmental factors is of interest.   286 

 287 

A second, potentially quite valuable application is that, aside from simple estimation 288 

of training workload, HRA can provide post-hoc information in great detail with regard to 289 

the mechanics of the runner which, in turn, can be informative with regard to overall 290 

performance.  For example, in Figure 4, we see a comparison of two different runners 291 

who compete at similarly high levels, and yet have quite different characteristics.  In 292 

particular, Athlete A (Green/White) possesses a lower VO2 max (65 ml/kg/min) than 293 

Athlete B (Red; 78 ml/kg/min), and yet is on par competitively, and in fact won a 294 

conference championship in front of Athlete B.  As can be seen from the figures, on test 295 

day one, the week prior to a conference championship, Athlete A exhibits a strikingly 296 

unique pattern of acceleration spikes in the anterior plane.  Athlete B who exhibits a 297 

greater aerobic capacity and maximal running speed in the incremental trial doesn’t 298 

display these spikes.  The difference in aerobic characteristics between these two 299 

runners is evidenced by the fact that Runner A reached VO2 max at 22 km/h, but was 300 

able to start the 24 km/h stage.  Runner B reached VO2 max during the 24 km/h stage 301 

and also reached exhaustion.  Despite the differences in aerobic capacity, Runner A 302 

won the conference 5 km championship in front of Athlete B four days after the Trial 1.  303 

In contrast the week after the conference championship where Athlete A expressed 304 



comments about fatigue, the athlete did not exhibit the striking acceleration spikes, and 305 

also became exhausted upon reaching VO2 max at 22 km/h (Figure 4 a) White plot).  It is 306 

not entirely clear why some runners can outperform others with equal or higher aerobic 307 

capacity, some have proposed anthropomorphic differences (13, 23), while others have 308 

argued for neuromuscular characteristics (32), and HRA may provide insight into this 309 

question.  The value in using HRA as opposed to other biomechanical measures to 310 

determine such differences is that in traditional gait mechanics analysis, only a few gait 311 

cycles can be measured, whereas if HRA are worn over the course of entire workout, or 312 

multiple workouts, a more complete picture of running mechanics/dynamics may be 313 

obtained and some characteristics identified that might not be observed in a limited lab 314 

testing scenario.   315 

 316 

Finally, a potential implementation of these devices is for the application of complex 317 

frequency or non-linear dynamical analysis of such data to gain further insight into the 318 

nature of fatigue or the constraints of running.  There has been some interest in the field 319 

of biomechanics with regard to high level mathematical (e.g. non-linear dynamical 320 

analysis, spectral analysis etc.) of walking/running gait patterns (7, 16, 20, 21, 27, 30). 321 

There have been a few attempts to extend some of these techniques to theories of 322 

fatigue in competitive running and this area potentially holds promise (5, 22, 33).  The 323 

use of HRA signal for these types of analysis may provide additional insight due to the 324 

high accuracy and high frequency sampling of these devices.   325 

 326 



In conclusion, we report here that RMS of unfiltered HRA signals, particularly RES, 327 

provide valid, reliable estimates of VO2 during walking and running in highly trained 328 

runners.  Further work is necessary to determine if these results, obtained in highly 329 

trained runners, are generalizable to a broader population by looking at untrained 330 

individuals.  It should also be determined if the same relationship between HRA and 331 

VO2 hold on inclined surface, and in open terrain.     332 

333 
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 448 

Table 1: Physical Characteristics of Subjects (N=7)  

  Mean SD Range  

Body Mass (kg) 65.5 5.7 58.2-75  

Height (cm) 181.8 4.1 175.3-188.0  

Age (yr) 21.4 1.7 19-24  

VO2max (mL/kg/min) 70.1 6.2 60-79  

Values are mean ± SD and range. BM, body mass. VO2max, peak oxygen 
uptake. 
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Table 2.  Correlations between RMS of acceleration in individual axes and VO2. 450 
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 462 

Table 3.  Regression parameters of VO2 vs individual axes.   463 

Axis Equation F R Adjusted R2 

Vertical Linear 444.7 .868 .751 

 Quadratic 221.0 .868 .750 

 Cubic 221.2 .868 .750 

     

Lateral Linear 496.3 .879 .771 

 Quadratic 420.3 .924 .851 

 Cubic 280.1 .924 .851 

     

Ant/Pos Linear 1242.3 .946 .894 

 Quadratic 668.3 .950 .900 

 Cubic 445.1 .950 .900 

     

Resultant Linear 1213.5 .945 .892 

 Quadratic 602.9 .945 .891 

 Cubic 603.4 .945 .891 

     

 464 

 465 

Table 4.  Reliability parameters for test-retest conditions and VO2.   466 

Axis ICC CV Pearson’s R 

Vertical .980 5.7 .964 

Lateral .972 23.7 .945 

Ant/Pos .968 23.7 .939 

Resultant .990 5.1 .982 

VO2 .992 5.2 .984 

 467 
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 469 

Figure 1.  Regressions of VO2 vs RMS of acceleration of individual axes during walking 470 

and running in highly trained distance runners.  Linear regressions are significant in all 471 

cases (p<.001).  a) Vertical b) Lateral c) Ant/Pos d) Resultant.                 = linear,       472 

= quadratic,              = cubic. 473 

 474 

 475 

Figure 2. RMS of accelerations (g) for individual axes vs. speed in highly trained 476 

runners during walking and running  in trials 1 and 2.  A) Vertical b) Lateral c) Ant/Pos d) 477 

Resultant.  Green = Trial 1 and Blue = Trial 2. 478 
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 480 

Figure 3.  VO2 vs speed in highly trained runners during walking and running for trials 1 481 

and 2.  Green = Trial 1, Blue = Trial 2. 482 
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Figure 4.  Raw acceleration in Ant/Pos axis for two different athletes.  Green = athlete A 485 

trial 1, White = Athlete A trial 2, Red = Athlete B , trial 1.  A) Acceleration plots for the 486 

entire run portion of the incremental test.  B) highlighted segment at 18 km/h which 487 

shows acceleration “spikes” in anterior plane.  C) a four stride segment showing 488 

successive acceleration spikes. D-F) three spikes from c) shown individually to 489 

demonstrate they are not aberrant artifacts and appear to be characteristic of the 490 

athletes running mechanics on this test day.   491 
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