Physics I Exam 3 Review

Zachary Boak^{1,2} Julia Bielaski^{1,2} Christopher Lane^{1,2}

¹Department Physics, Clarkson University ²Department Mathematics, Clarkson University

November 10, 2010

Outline

- Must knows!!
- Multiple Choice
 - Chapter 7:Kinetic Energy and Work
 - Chapter 8: Potential Energy and Conservation of Energy
 - Chapter 9: Center of Mass and Linear Momentum
- Problems
 - Problem 1
 - Problem 2

Must Knows!!

$$KE = \frac{1}{2}mv^{2}$$

$$\Delta U = mgh$$

$$\Delta E_{th} = f_{k}d$$

$$U(x) = \frac{1}{2}kx^{2}$$

The difference between an elastic and inelastic collision

Must knows!! Multiple Choice Problems Chapter 7:Kinetic Energy and Work
Chapter 8: Potential Energy and Conservation of Energy
Chapter 9: Center of Mass and Linear Momentum

Multiple Choice

Chapter 7: Kinetic Energy and Work

A man pulls a sled along a rough horizontal surface by applying a constant force \vec{F} at an angle θ above the horizontal. In pulling the sled a horizontal distance d, the work done by the man is:

- A Fd
- B $Fd\cos\theta$
- $C Fd \sin \theta$
- D Fa
- $E \frac{Fd}{\sin \theta}$

A man pulls a sled along a rough horizontal surface by applying a constant force \vec{F} at an angle θ above the horizontal. In pulling the sled a horizontal distance d, the work done by the man is:

A Fd

B $Fd\cos\theta$

 $C Fd \sin \theta$

 $D = \frac{Fd}{\cos \theta}$

 $E \frac{Fd}{\sin \theta}$

Answer: B

Which of the following bodies has the largest kinetic energy?

- A Mass 3M and speed V
- B Mass 3M and speed 2V
- C Mass 2M and speed 3V
- D MassM and speed 4V
- E All four of the above have the same kinetic energy

Which of the following bodies has the largest kinetic energy?

A Mass 3M and speed V

B Mass 3M and speed 2V

C Mass 2M and speed 3V

D MassM and speed 4V

E All four of the above have the same kinetic energy

Answer: C

Question 3

The amount of work required to stop a moving object is equal to:

- A the velocity of the object
- B the kinetic energy of the object
- C the mass of the object times its acceleration
- D the mass of the object times its velocity
- E the square of the velocity of the object

Question 3

The amount of work required to stop a moving object is equal to:

- A the velocity of the object
- B the kinetic energy of the object
- C the mass of the object times its acceleration
- D the mass of the object times its velocity
- E the square of the velocity of the object

Answer: B

Chapter 8: Potential Energy and Conservation of Energy

The sum of the kinetic and potential energies of a system of objects is conserved:

- A only when no external force acts on the objects
- B only when the objects move along closed paths
- C only when the work done by the resultant external force is zero
- D always
- E none of the above

The sum of the kinetic and potential energies of a system of objects is conserved:

A only when no external force acts on the objects

B only when the objects move along closed paths

C only when the work done by the resultant external force is zero

D always

E none of the above

Answer: E

A golf ball is struck by a golf club and falls on a green three meters above the tee. The potential energy of the Earth-ball system is greatest:

- A just before the ball is struck
- B just after the ball is struck
- C just after the ball lands on the green
- D when the ball comes to rest on the green
- E when the ball reaches the highest point in its flight

A golf ball is struck by a golf club and falls on a green three meters above the tee. The potential energy of the Earth-ball system is greatest:

- A just before the ball is struck
- B just after the ball is struck
- C just after the ball lands on the green
- D when the ball comes to rest on the green
- E when the ball reaches the highest point in its flight

Answer: E

A block slides across a rough horizontal table top. The work done by friction changes:

A only the kinetic energy

B only the potential energy

C only the internal energy

Only the kinetic and potential energies

E only the kinetic and internal energies

A block slides across a rough horizontal table top. The work done by friction changes:

A only the kinetic energy

B only the potential energy

C only the internal energy

D only the kinetic and potential energies

E only the kinetic and internal energies

Answer: E

Chapter 9: Center of Mass and Linear Momentum

A man sits in the back of a canoe in still water. He then moves to the front of the canoe and sits there. Afterwards the canoe:

- A is forward of its original position and moving forward
- B is forward of its original position and moving backward
- C is rearward of its original position and moving forward
- D is rearward of its original position and moving backward
- E is rearward of its original position and not moving

A man sits in the back of a canoe in still water. He then moves to the front of the canoe and sits there. Afterwards the canoe:

A is forward of its original position and moving forward

B is forward of its original position and moving backward

C is rearward of its original position and moving forward

D is rearward of its original position and moving backward

E is rearward of its original position and not moving

Answer: E

- A projectile in flight explodes into several fragments. The total momentum of the fragments immediately after this explosion:
- A is the same as the momentum of the projectile immediately before the explosion
- B has been changed into kinetic energy of the fragments
- C is less than the momentum of the projectile immediately before the explosion
- D is more than the momentum of the projectile immediately before the explosion
- E has been changed into radiant energy

A projectile in flight explodes into several fragments. The total momentum of the fragments immediately after this explosion:

- A is the same as the momentum of the projectile immediately before the explosion
- B has been changed into kinetic energy of the fragments
- C is less than the momentum of the projectile immediately before the explosion
- D is more than the momentum of the projectile immediately before the explosion
- E has been changed into radiant energy

Answer: A

Question 3

The momentum of an object at a given instant is independent of its:

A inertia

B mass

C speed

D velocity

E acceleration

The momentum of an object at a given instant is independent of its:

A inertia

B mass

C speed

D velocity

E acceleration

Answer: A

Problems

Problem 1

A block (m=1.0kg) when released will slide down a hill($h_1=10m$)and then across a frictinal patch($L_1=2.0m$), around a loop ($h_2=3.0m$), Jacross another frictional patch($L_2=1.0m$) and into a spring that is compressed($k=4160\frac{N}{m}$). The coefficient of friction between the block and the frictional patches is $\mu_k=0.50$. All other regions are considered frictionless.

- a) Find the speed at point B
- b) Find the speed at point C
- c) how far the spring will compress
- d) how much work is done by kinetic friction

Problem 2

A stationary block of mass m=1.0kg is struck by a bullet moving at $1000\frac{m}{s}$ which propells it up a hill of height h=2.0m and across a frictional patch($\mu_k = 0.5$)

- a) How fast is the block moving just after the collision if the bullet goes through the block and emerges at $300\frac{m}{c}$
- b) How long is the distance between L_1 and L_2
- If the bullet embeds itself in the block how fast is the block moving just after the collision
- d) What is the distance between L_1 and L_2 in part C Bonus:How high does the hill need to be to just stop the block at the top in part A