Solving nonlinear PDEs using RBF-FD

S Murphy, O Ogunleye, K Rubasinghe and G Yao

Clarkson University
Potsdam, NY, USA

June 10-13, 2024
Bled, Slovenia

Nonlinear time-dependent PDEs

Consider the following general form of nonlinear time-dependent PDE problem:

$$
\left\{\begin{array}{l}
\frac{\partial u(\mathbf{x}, t)}{\partial t}=\mathcal{D} u(\mathbf{x}, t)+f(\mathbf{x}, t, u(\mathbf{x}, t)), \quad \mathbf{x} \in \Omega \subset \mathbb{R}^{d}, \tag{1}\\
\mathcal{B} u(\mathbf{x}, t)=g(\mathbf{x}, t, u(\mathbf{x}, t)), \quad \mathbf{x} \in \partial \Omega, \\
u(\mathbf{x}, 0)=u^{0}(\mathbf{x}), \quad \mathbf{x} \in \Omega \cup \partial \Omega
\end{array}\right.
$$

where \mathcal{D} is a nonlinear partial differential operator and \mathcal{B} is the boundary differential operator, f, g, and u^{0} are known linear or nonlinear functions, Ω is a computational domain, and $\partial \Omega$ is the boundary of Ω.

Nonlinear time-dependent PDEs (Cont'd)

FDM in time:

- Time-space is discretized by the Implicit Time Stepping method:

$$
\begin{equation*}
\frac{\partial u(\mathbf{x}, t)}{\partial t} \approx \frac{u(\mathbf{x}, t)-u\left(\mathbf{x}, t_{0}\right)}{h}=\mathcal{D} u(\mathbf{x}, t)+f(\mathbf{x}, t, u(\mathbf{x}, t)) \tag{2}
\end{equation*}
$$

where $t=t_{0}+h$ and h is the time step size.
Rearranging (2) and rewriting the boundary condition at t, gives

$$
\left\{\begin{array}{l}
h \mathcal{D} u(\mathbf{x}, t)-u(\mathbf{x}, t)+u\left(\mathbf{x}, t_{0}\right)+h f(\mathbf{x}, t, u(\mathbf{x}, t))=0, \quad \mathbf{x} \in \Omega \tag{3}\\
\mathcal{B} u(\mathbf{x}, t)-g(\mathbf{x}, t, u(\mathbf{x}, t))=0, \quad \mathbf{x} \in \partial \Omega
\end{array}\right.
$$

This is a nonlinear elliptic PDE, where $u(\mathbf{x}, t)$ is the unknown function. We will use the localized implicit method of approximated particular solutions (LMAPS) to find it. It actually is almost the same as RBF-FD.

Nonlinear time-dependent PDEs (Cont'd)

General elliptic equations:

$$
\begin{cases}\tilde{\mathcal{D}} u(\mathbf{x}) & =f(\mathbf{x}), \tag{4}\\ \tilde{\mathcal{B}} u(\mathbf{x}) & =g(\mathbf{x}), \\ \mathbf{x} \in \partial \Omega\end{cases}
$$

- Spatial-space is discretized by the LMAPS (RBF-FD) using polyharmonic splines together with the polynomial bases.
- Collocation technique:

History of LMAPS, really it is just RBF-FD

$$
\begin{aligned}
& \hat{u}(\mathbf{x})=\sum_{j=1}^{N} \alpha_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right) \\
& \hat{u}(\mathbf{x})=\sum_{j=1}^{m} \alpha_{j} G\left(\mathbf{x}, \mathbf{x}_{j}^{s}\right)
\end{aligned}
$$

$$
\tilde{\mathcal{D}} u(\mathbf{x})=0
$$

$$
u=u_{h}+u_{p}
$$

$$
\hat{u}(\mathbf{x})=\sum_{j=1}^{\mathcal{N}_{i}} \alpha_{j} \Phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)+\sum_{l=1}^{\mathcal{N}_{b}} \beta_{l} G\left(\left\|\mathbf{x}-\mathbf{x}_{l}^{s}\right\|\right)
$$

LMAPS for Elliptic Equations

General Elliptic Equations:

$$
\begin{align*}
\tilde{\mathcal{D}} u(\mathbf{x})=f(\mathbf{x}), & \mathbf{x} \in \Omega \tag{5}\\
\tilde{\mathcal{B}} u(\mathbf{x})=g(\mathbf{x}), & \mathbf{x} \in \partial \Omega \tag{6}
\end{align*}
$$

LMAPS using PH of order k and polynomials of order m :

$$
\begin{equation*}
u\left(\mathbf{x}_{i}\right) \approx \hat{u}\left(\mathbf{x}_{i}\right)=\sum_{j=1}^{n} \alpha_{j} \Phi\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}^{[i]}\right\|\right)+\sum_{l=1}^{w} \alpha_{n+l} p_{l}\left(\mathbf{x}_{i}\right) ; \quad \mathbf{x}_{i} \in \Omega . \tag{7}
\end{equation*}
$$

Collocation in local domains: $\mathbf{u}(\mathbf{x})=\Phi \alpha \Rightarrow \mathbf{u}=\Phi \alpha \Rightarrow \alpha=\Phi^{-1} \mathbf{u}$

Differentiation of unknowns:

$$
\begin{align*}
& \tilde{\mathcal{D}} u(\mathbf{x})=\tilde{\mathcal{D}} \Phi(\mathbf{x}) \Phi^{-1} \mathbf{u} \tag{8}\\
& \tilde{\mathcal{B}} u(\mathbf{x})=\tilde{\mathcal{B}} \Phi(\mathbf{x}) \Phi^{-1} \mathbf{u} \tag{9}
\end{align*}
$$

LMAPS for Elliptic Equations

Discretized linear elliptic equations in matrix-vector form:

$$
\begin{equation*}
A \mathbf{u}=\mathbf{b} \tag{10}
\end{equation*}
$$

where A is a global sparse matrix, \mathbf{u} is the unknown solution of the given elliptic equation at a set of evaluation points of interests. This can be solved by a sparse system solver. Note that this is similar to what so called RBF-FD scheme.

Discretized nonlinear elliptic equations in matrix-vector form:

$$
\begin{equation*}
A(\mathbf{u})=\mathbf{b} . \tag{11}
\end{equation*}
$$

This is a system of nonlinear algebraic equations, which can be solved by nonlinear solver for system of equations, such as Picard method or Newton-Raphson method.

Example 1 - Interpolation of Franke's Functions

Figure 1: Left: F1; Middle: RMS errors vs total number of interpolation points; Right: maximum condition number of local matrices with order of PH $k=4$, and order of polynomials $m=3$.

Figure 2: $N=100^{2}, N_{t}=9000, n=30$. Left: $m=6$; Middle: $k=4$; Right: CPU time.

Example 2 - Nonlinear Elliptic

Nonlinear elliptic equation with mixed BCs:

$$
\begin{aligned}
& \Delta u(x, y)+y \cos (y) \frac{\partial u(x, y)}{\partial x}-x \sin (x) \frac{\partial u(x, y)}{\partial y}+u^{2}(x, y)=f(x, y) \\
& u(x, y)=g(x, y), \quad(x, y) \in \partial \Omega^{D}, \\
& \frac{\partial u(x, y)}{\partial \mathbf{n}}=h(x, y), \quad(x, y) \in \partial \Omega^{N},
\end{aligned}
$$

Figure 3: Left: domain; Right: analytical solution.

Example 2 - Nonlinear Elliptic (Cont'd)

Table 5. Example 4.4. Comparison of $\epsilon_{\mathrm{rms}}, \epsilon_{\infty}$ using ILMAPS with PHS and LMAPS with PBF for different order of polynomial basis with $n_{i}=14,350, n_{b}=400$.

m	LMAPS with PHS			LMAPS with PBF [Dangal et al.	
	ϵ_{rms}		ϵ_{∞}		ϵ_{rms}

Figure 4: $N_{i}=6830, N_{b}=400, n=150, k$ 크 4 .

Example 3 - Nonlinear Burger's equation:

$$
\begin{equation*}
\frac{\partial u}{\partial t}+u u_{x}+u u_{y}=\alpha \Delta u, \quad(x, y) \in \Omega \tag{12}
\end{equation*}
$$

where $\Omega=[0,1]^{2}$ and initial and Dirichlet boundary conditions are obtained using the exact solution $u(x, y, t)=1 /\left(1+e^{(x+y-t) / 2 \alpha}\right)$, where $\alpha=1 / R$ and R is Reynold's number.

Profiles of the analytical solutions and the absolute errors at $t=0.5,1,1.5$, and 2.75 computed with $k=2, m=2$, and $n=9$ and $R=10$.

Figure 5: The errors as functions of time when 31×31 uniformly distributed nodes are used. Note that $\Delta t=0.01, k=2, m=2$ and $n=9$.

Figure 6: The rate of convergence with respect to N for various α when time $t=3$.

Figure 7: The rate of convergence with respect to Δt when time $t=3$.

Conclusion

- The localized interpolation methods based on polyharmonic splines have been found to be highly accurate.
- High efficiency of ILMAPS when coupled with the Picard method for solving nonlinear elliptic and parabolic PDEs in both 2D and 3D.
- The method's benefits include using shape parameter-free polyharmonic splines and can improve accuracy through more points in local domains and higher-order polynomial basis functions combined with PHS.
- III-conditioning problem with small interpolation matrices - pre-conditioning needed?
- Me not be too lazy - work on RBF+nonlinear solver with high Reynold's number.

Thank You!

