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Nonlinear time-dependent PDEs

Consider the following general form of nonlinear time-dependent PDE
problem:


∂u (x, t)

∂t = Du (x, t) + f (x, t, u (x, t)) , x ∈ Ω ⊂ Rd ,

Bu (x, t) = g(x, t, u (x, t)), x ∈ ∂Ω,

u(x, 0) = u0 (x) , x ∈ Ω ∪ ∂Ω,

(1)

where D is a nonlinear partial differential operator and B is the boundary
differential operator, f , g , and u0 are known linear or nonlinear functions,
Ω is a computational domain, and ∂Ω is the boundary of Ω.
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Nonlinear time-dependent PDEs (Cont’d)

FDM in time:
Time-space is discretized by the Implicit Time Stepping method:

∂u(x, t)
∂t ≈ u(x, t) − u(x, t0)

h = Du(x, t) + f (x, t, u(x, t)). (2)

where t = t0 + h and h is the time step size.

Rearranging (2) and rewriting the boundary condition at t, gives
hDu(x, t) − u(x, t) + u(x, t0) + hf (x, t, u(x, t)) = 0, x ∈ Ω,

Bu(x, t) − g(x, t, u(x, t)) = 0, x ∈ ∂Ω.
(3)

This is a nonlinear elliptic PDE, where u(x, t) is the unknown function.
We will use the localized implicit method of approximated particular
solutions (LMAPS) to find it. It actually is almost the same as RBF-FD.
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Nonlinear time-dependent PDEs (Cont’d)

General elliptic equations:{
D̃u(x) = f (x), x ∈ Ω,

B̃u(x) = g(x), x ∈ ∂Ω
(4)

Spatial-space is discretized by the LMAPS (RBF-FD) using
polyharmonic splines together with the polynomial bases.

Collocation technique:
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History of LMAPS, really it is just RBF-FD

Method of 
Fundamental 

Solutions 

Method of 
Particular Solutions 

(MPS) 

Kansa’s Method

Two-stage 
MFS-MPS

One-stage 

MFS-MPS

Localized MPS 
(LMPS or LMAPS)

Boundary Value 
Problem (BVP)
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LMAPS for Elliptic Equations

General Elliptic Equations:
D̃u(x) = f (x), x ∈ Ω, (5)
B̃u(x) = g(x), x ∈ ∂Ω (6)

LMAPS using PH of order k and polynomials of order m:

u(xi) ≈ û(xi) =
n∑

j=1
αjΦ(||xi − x[i]

j ||) +
w∑

l=1
αn+lpl(xi); xi ∈ Ω. (7)

Collocation in local domains: u(x) = Φα ⇒ u = Φα ⇒ α = Φ−1u

Differentiation of unknowns:
D̃u(x) = D̃Φ(x)Φ−1u (8)
B̃u(x) = B̃Φ(x)Φ−1u (9)
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LMAPS for Elliptic Equations

Discretized linear elliptic equations in matrix-vector form:

Au = b, (10)

where A is a global sparse matrix, u is the unknown solution of the given
elliptic equation at a set of evaluation points of interests. This can be
solved by a sparse system solver. Note that this is similar to what so
called RBF-FD scheme.

Discretized nonlinear elliptic equations in matrix-vector form:

A(u) = b. (11)

This is a system of nonlinear algebraic equations, which can be solved by
nonlinear solver for system of equations, such as Picard method or
Newton-Raphson method.
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Example 1 – Interpolation of Franke’s Functions

Figure 1: Left: F1; Middle: RMS errors vs total number of interpolation points;
Right: maximum condition number of local matrices with order of PH k = 4, and
order of polynomials m = 3.

Figure 2: N = 1002, Nt = 9000, n = 30. Left: m = 6; Middle: k = 4; Right:
CPU time.
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Example 2 – Nonlinear Elliptic

Nonlinear elliptic equation with mixed BCs:

Figure 3: Left: domain; Right: analytical solution.
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Example 2 – Nonlinear Elliptic (Cont’d)

Figure 4: Ni = 6830, Nb = 400, n = 150, k = 4.
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Example 3 – Nonlinear Burger’s equation:
∂u
∂t + uux + uuy = α∆u, (x , y) ∈ Ω, (12)

where Ω = [0, 1]2 and initial and Dirichlet boundary conditions are ob-
tained using the exact solution u(x , y , t) = 1/(1 + e(x+y−t)/2α), where
α = 1/R and R is Reynold’s number.

Profiles of the analytical solutions and the absolute errors at t = 0.5, 1, 1.5,and 2.75 computed
with k = 2, m = 2, and n = 9 and R = 10.
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Figure 5: The errors as functions of time when 31 × 31uniformly distributed nodes are used.
Note that ∆t = 0.01, k = 2, m = 2 and n = 9.
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Figure 6: The rate of convergence with
respect to N for various α when time
t = 3.
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Figure 7: The rate of convergence with
respect to ∆t when time t = 3.
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Conclusion
The localized interpolation methods based on polyharmonic splines have been
found to be highly accurate.

High efficiency of ILMAPS when coupled with the Picard method for solving
nonlinear elliptic and parabolic PDEs in both 2D and 3D.

The method’s benefits include using shape parameter-free polyharmonic splines
and can improve accuracy through more points in local domains and higher-order
polynomial basis functions combined with PHS.

Ill-conditioning problem with small interpolation matrices – pre-conditioning
needed?

Me not be too lazy – work on RBF+nonlinear solver with high Reynold’s number.
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Thank You!

14 / 14


	

