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Example Problem 1: Potential Energy

Given coordinates of a group of atoms , find its 
potential energy 

x1, x2, ⋯, xn
E = E(x1, x2, ⋯, xn)

Physical Symmetries
• Translation     E = E(x1 + Δx, x2 + Δx, ⋯, xn + Δx)
• Rotation         E = E(Rx1, Rx2, ⋯, Rxn)

• Permutation   E = E(xσ(1), xσ(2), ⋯, xσ(n))



Example Problem 2: Transport Equation

Spatial discretization: , , 

Consider the quantity 

x1, x2, ⋯, xn u1 = u(x1), u2 = u(x2), …, un = u(xn)

I := ∫
Ω

c(x)dx ≈ I(x1, x2, ⋯, xn, u1, u2, ⋯, un)

Δc(x) − ∇ ⋅ (u(x)c(x)) + S(c(x)) = 0

Physical Symmetries
• Translation      
• Rotation          
• Permutation    

I = I(x1 + Δx, x2 + Δx, ⋯, xn + Δx, u1, u2, ⋯, un)
I = I(Rx1, Rx2, ⋯, Rxn, Ru1, Ru2, ⋯, Run)
I = I(xσ(1), xσ(2), ⋯, xσ(n), uσ(1), uσ(2), ⋯, uσ(n))



Problem Setup
A function  maps a set of coordinates to a scalar outputf

y = f(x1, x2, ⋯, xn)

Why symmetry-preserving?  

• respect the physics
• better data efficiency
• better accuracy

Supervised learning: fit this function from data and preserve all the symmetries 
simultaneously



Related Work

• Handcrafted features, kernel method: Gaussian Approximation Potentials 
(GAP), Smooth Overlap of Atomic Positions (SOAP), etc.

• Group representation: Group Equivariant Convolutional Networks, Steerable 
Convolutional Neural Networks, Clebsch–Gordan Nets, etc.

• Behler-Parrinello neural network (BPNN)

• Learned features: Deep Potential/Vector Cloud Neural Network, SchNet, etc.



Translation and Rotation Symmetry
Translation: always use relative coordinates

(x1, x2, ⋯, xn) ↦ (x′ 1, x′ 2, ⋯, x′ n) = (x1 − x̄, x2 − x̄, ⋯, xn − x̄)

Rotation:
D′ ij = x′ i ⋅ x′ j    or    D′ = X⊤X  with  X = [x′ 1, x′ 2, ⋯, x′ n]⊤

However, it lacks permutational invariance



Permutation Symmetry
Deep Sets: a function  operating on a set  can be represented byf {xi}n

i=1

ρ(
n

∑
i=1

ϕ(xi))

Example:

Ansatz: parameterize  with neural networksϕ, ρ

z2
1 + z2

2 + z1z2 =
1
2

(z1 + z2)2 +
1
2

(z2
1 + z2

2)

Let ϕ(z) = [z, z2]⊤  and  ρ([a, b]⊤) = a2/2 + b/2



All Symmetries Simultaneously
Introduce a set of  embedding functions m {ϕk( ⋅ )}m

k=1

Lkj =
1
n

n

∑
i=1

ϕk( |x′ i | )x′ ij, k = 1,⋯, m, j = 1,2,3

or   L =
1
n

G⊤X  with  Gki = ϕk( |x′ i | )

This leads to symmetry-preserving feature matrix D = LL⊤ =
1
n2

G⊤XX⊤G

Ansatz: parameterize  with neural networksϕ, ρ

Map to the final output through a general function ρ(vec(D))



Extensions
• Guarantee equivariance if the output is

Open question: universal approximation property with practical optimality and 
scalability

vector: r = f(x1, x2, ⋯, xn) → Rr = f(Rx1, Rx2, ⋯, Rxn)

• Guarantee invariance and equivariance if we have additional scalar/vector/
tensor features attached to each point

or tensor: Q = f(x1, x2, ⋯, xn) → RQR⊤ = f(Rx1, Rx2, ⋯, Rxn)

• Use high-order information to do embedding



Application: Molecular Dynamics
Deep Potential for molecular dynamics



Application: Molecular Dynamics

 is bounded as system size 
increased by short-range effect
n



Importance of Symmetry



Application: Transport Equation
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Vector-Cloud Neural Network (VCNN) for nonlocal modeling

Δc(x) − ∇ ⋅ (u(x)c(x)) + S(c(x)) = 0

Solve  at any point  from the 
velocity field  around 
(nonlocal relationship)

c(x) x0
u(x) x0



Adaptivity to Different Sizes
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ground truth local (n = 1) coarse nonlocal (n = 25) baseline nonlocal (n = 150)



Evaluation in Different Frames

Prediction by an operator 



Importance of Frame Invariance

Prediction by an operator 

Prediction by an operator 
based on graph neural 
networks without rotation 
symmetry.  The results are  
highly sensitive to the angles 
of the reference frame.



Closure Model for RANS equations
Constitutive relationship for k? 
 
Use vector-cloud neural network to model k



Closure Model for RANS equations
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“Third Pillar” of Science
Together with theory and experimentation, computational science 
now constitutes the “third pillar” of scientific inquiry.   
                           — President’s Information Technology Advisory Committee report (2005)
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The institute, an internal research division of the Simons 
Foundation, is a community of scientists who are working to use 
modern computational tools to advance our understanding of 
science, both through the analysis of large, rich datasets and 
through the simulations of physical process.
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