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Example Problem 1: Potential Energy

Given coordinates of a group of atoms x, X,, -+, X,, find its
potential energy £ = E(x{,X,, =+, X,)

Physical Symmetries
. Translation E = E(x; + Ax,x, + Ax, ---,x, + Ax)

- Rotation E = E(Rxl, sz, °ee, Rxn)

. Permutation E = E(xa(l), X5(2)> ---,xa(n))
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Example Problem 2: Transport Equation
Ac(x)— V- (ux)cx)) + Scx)) =0
Spatial discretization: X, X5, **+, X,,, U; = U(xy), U, = u(x,), ..., u, = u(x,),

Consider the quantity [ := IQ cx)dx =~ I(x, X, ==+, X, , Uy, Uy, *+*, U,)

Physical Symmetries
. Translation I =1(x;+ Ax,x, + Ax, -, x, + Ax,u,u,, -, u,)
. Rotation [ =I(Rx{,Rx,,--,Rx,,Ru,Ru,,---,Ru,)

. Permutation [ = I(xa(l), xG(Z), cee, xo.(n), uo.(l), ud(z), teey, uo.(n))
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Problem Setup

A function f maps a set of coordinates to a scalar output

y :f(xl,xZ’ ""xn)

Supervised learning: fit this function from data and preserve all the symmetries
simultaneously

Why symmetry-preserving?

* respect the physics
* better data efficiency
* better accuracy ﬂ\' LATIRON.
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Related Work

- Handcrafted features, kernel method: Gaussian Approximation Potentials
(GAP), Smooth Overlap of Atomic Positions (SOAP), etc.

 Behler-Parrinello neural network (BPNN)

- Learned features: Deep Potential/Vector Cloud Neural Network, SchNet, etc.

- Group representation: Group Equivariant Convolutional Networks, Steerable
Convolutional Neural Networks, Clebsch—Gordan Nets, etc.

q_ FLATIRON

Nl TE

aaaaaaaaaaa




Translation and Rotation Symmetry

Translation: always use relative coordinates
(x19x2a "'9xn) = (xiaxéa ---,x,’l)=(x1—.f,x2—i', e, X

Rotation:
) / ' vl : _ ’ ’ T
D;=x;-x; or D'=X X with X = [x},x;, -, x,]

However, it lacks permutational invariance
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Permutation Symmetry

Deep Sets: a function f operating on a set {x;}"_, can be represented by

p( i (x)))
i=1

2 2 1 2 1 2 2
Example:  z;+2z5 + 215 = E(Z1 +2,)" + 5(zl +25)

Let (2) = [z,2%]" and p([a,b]") = a?/2 + b/2

Ansatz: parameterize ¢, p with neural networks
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All Symmetries Simultaneously
Introduce a set of m embedding functions {¢,( - ) }]_,

1 |
Ly=— Y hllx/Dxj k=lowm j=123
i=1

1
or L = —GTX with Gki = ¢k( |xl/|)
n

This leads to symmetry-preserving feature matrix D = LLT = —ZGTXXTG
n

Map to the final output through a general function p(vec(D))
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Ansatz: parameterize ¢, p with neural networks




Extensions

- Guarantee equivariance if the output is
vector:r = f(x, X, --,x,) — Rr =f(Rx,,Rx,,---,Rx,)
ortensor: Q0 = f(x,x,, =**,X,) — ROR' = f(Rx,Rx,,--,Rx,)

- Guarantee invariance and equivariance if we have additional scalar/vector/
tensor features attached to each point

 Use high-order information to do embedding

Open question: universal approximation property with practical optimality and
scalability
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Application: Molecular Dynamics

Deep Potential for molecular dynamics
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Application: Molecular Dynamics

' n is bounded as system size |
| increased by short-range effect |

(a) AIMD + HPC; (b) DeePMD+1 () DeePMD+27?f60 X~ FLATIRON
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Importance of Symmetry
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Application: Transport Equation

Vector-Cloud Neural Network (VCNN) for nonlocal modeling

Ac(x) =V - (ux)cx))+ Slcx) =0

Solve c¢(x) at any point X, from the
velocity field u(x) around x,
(nonlocal relationship)

~
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Adaptivity to Different Sizes

ground truth ~ =====- local (n = 1) coarse nonlocal (n = 25) — — baseline nonlocal (n = 150)
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Evaluation in Different Frames

Truth GKN with rotational invariance VCNN
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Importance of Frame Invariance
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Closure Model for RANS equations
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Closure Model for RANS equations
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"Third Pillar” of Science

Together with theory and experimentation, computational science

now constitutes the “third pillar” of scientific inquiry.
— President’s Information Technology Advisory Committee report (2005)

j Validation ‘\\‘

Real Computational
Experiments Experiments
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About Flatiron Institute

The institute, an internal research division of the Simons
Foundation, is a community of scientists who are working to use
modern computational tools to advance our understanding of
science, both through the analysis of large, rich datasets and
through the simulations of physical process.
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Centers

Center for Computational
Astrophysics

Astronomical Data

Compact Objects

Cosmology X Data Science
Dynamics

Galaxy Formation
Gravitational Wave Astronomy
Planet Formation

Center for Computational
Neuroscience

Computational Vision

Neural Circuits and Algorithms
NeuroAl and Geometric Data Analysis
Statistical Analysis of Neural Data

Center for Computational
Biology

Biophysical Modeling
Developmental Dynamics
Genomics

Systems Biology

Center for Computational
Quantum Physics

Dynamics and Control
Quantum Materials
Software Libraries
Theory and Methods

Center for Computational
Mathematics

Image and Signal Processing
Machine Learning and Data Analysis
Numerical Analysis

Scientific Computing Core

It develops, deploys and maintains
computational infrastructure — from
supercomputers to desktop PCs —
dedicated solely to the use of Flatiron
researchers.
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