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HYDRODYNAMIC FORCES AND TORQUE FOR A 
NONSPHERICAL PARTICLE 

 
 In this section the hydrodynamic forces and torque for nonspherical particles are 
presented. 
 
1. Drag on an Axisymmetric Body 
 

Consider an axisymmetric body in creeping flow as shown in Figure 1.  Here z 
and ρ  are the axial and radial coordinate system and s and n are tangential and normal 
unit vectors.    

 

 
Figure 1.  Schematics of an axisymmetric particle in a creeping flow. 
 
 
The stress tensor for an incompressible viscous fluid is given as 

 
 dIτ µ+−= 2p ,   where   ( )[ ]Tvvd ∇+∇=            (1) 
 
When an arbitrary shaped particle moves in a fluid, the resultant of the stresses acting on 
the surface of the body give rise to a hydrodynamic force F  (drag, lift, and side force 
components and a hydrodynamic torque T ).  In general these are given by 
 
 ∫ ⋅=

S
τdSF , ( )∫ ⋅×=

S
T τdSr ,             (2) 

 
where S is the surface of the body and r  is the position vector. 

 
 For an axisymmetric body in a uniform flow, the resultant of the stresses is only a 
drag force acting parallel to the direction of the flow.  For the example shown in Figure 1, 
 
 ∫∫ ⋅⋅=⋅⋅=⋅=

S zS zzz dSF eτneτdSeF .            (3) 
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When an intrinsic coordinate is used, 
 

ds2dS πρ= .                (4) 
 
The expression for τn ⋅  as evaluated by Happel an Brenner is given by 
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Using (5) in (3) after some algebra, it follows that 
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This equation relates the Stokes stream function ψ  to the drag for an axisymmetric body. 
 
 Evaluation of the integral on the right hand side of (6) could become quite 
cumbersome. When the fluid is at rest at infinity, the flow field for a point force is given 
by 
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F 2
z ρ
πµ

=ψ , 3
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z
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Fp
π

−= ,              (7) 

 
where 
 
 222 zr +ρ= .                (8) 
 
Since far from the particle, the effect of the particle is essentially equivalent to a point, it 
follows that 
 

 2rz
rlim8F
ρ
ψ

πµ=
∞→

.               (9) 

 
When the fluid is not at rest at infinity, (9) is replaced by 
 

 ( )
2rZ

r
lim8F

ρ
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πµ= ∞

∞→
.            (10) 
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2. Oblate Spheroid in a Uniform Flow 
 
 Consider the creeping flow of a uniform stream passing an oblate spheroid at rest 
as shown in Figure 2. 
. 

 

 
Figure 2.  Schematic of an oblate spheroid in a uniform creeping flow. 

 
 

The appropriate coordinate system is oblate spheroidal coordinates ( )φθξ ,,  with 
 

 














θξ=
φθξ=
φθξ=

cossinhcz
sinsincoshcy
cossincoshcx

            (11) 

 
For brevity, let 
 
 ξ=λ sinh , θ=ζ cos              (12) 
 
Then ρ  and z may be expressed as 
 
 2222 11csincoshcyx ζ−+λ=θξ=+=ρ ,         (13) 
 
 λζ= cz .              (14) 
 
The ranges of variation of λ  and ζ  then are 
 
 0≥λ>∞   and  11 −≥ζ≥ .           (15) 
 
 For obtaining the flow field around the spheroid, the biharmonic creeping flow 
equation given by 
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 0E4 =ψ               (16) 
 
must be solved.  The boundary conditions are 
 
 0=ψ    at  ( )00 ξ=ξλ=λ  
 

 0=
λ∂
ψ∂   at  ( )00 ξ=ξλ=λ        

      (17) 
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ζ−+λ=ρ→ψ   as   λ  (or ∞→ξ) .       (18) 

 
Note that here 
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are used. 
 
 Using (19), the operator 
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may be restated as 
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 The boundary conditions suggest a solution in the form, 
 
 ( ) ( )λζ−=ψ g1 2              (22) 
 
Substituting this solution into equation (16) and using (21), yields (Happel and Brenner) 
 

 ( )( )
( ) ( ) ( )[ ] 0GGG4

C
11 22

224

22

=′′ρ+λ+′λ−
ξ+λ
ξ−+λ ,         (23) 

 
where 
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 ( ) ( ) ( ) ( )λ−λ′′+λ=λ g2g1G 2             (24) 
 
Here 
 

 ( ) ( )λ
ζ+λ

ζ−
=ψ G

C
1E 222

2
2             (25) 

 
was used. From (23) it follows that 
 
 ( ) ( ) 0GGG4 22 =′′ζ+λ+′λ− .           (26) 
 
It is noted that the first term in (26) depends only on λ , while the second term depends 
on λ  and ζ . The equation can be satisfied only if 
 
 0G =′′               (27) 
 
and 
 
 0GG =′λ−                          (28) 
 
The solution satisfying both equations (27) and (28) is given as 
 
 λ= 1CG ,              (29) 
 
where 1C  is a constant. From (29) it follows that 
 
 ( ) λ=−′′+λ 1

2 Cg2g1              (30) 
 
The general solution to equation (30), which is the summation of the homogeneous and 
particular solutions, is given as 
 

 ( ) ( )[ ] ( )
444444 3444444 2143421

solution  sHomogeneou
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1 1Ccot1C
2
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2
1g +λ+λ+λ−λ+λ−=λ −         (31) 

 
Using (31) in (22), the expression for the stream function becomes 
 

 ( ) ( )[ ] ( )





 +λ+λ+λ−λ+λ−ζ−=ψ − 1Ccot1C
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The constant 1C , 2C , and 3C  may now be determined by using the boundary conditions 
given by (17) and (18). These become 
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The final expression for the stream function becomes 
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where 00 sinh ξ=λ . 
 
 For an oblate spheroid translating with a velocity U in an otherwise quiscent fluid, 

the solution may be obtained by subtracting 2U
2
1

ρ  from equation (34), i.e. 
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 The force exerted on the spheroids can be obtained by using (34) or (35) in 
Equations (8) or (9).  Since λ→ cr  at large distances from the spheroid 
 

 2z limc8F
ρ
λψ

πµ=
∞→λ

.             (36) 

 
It then follows that 
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Equation (37) may be expressed as 
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 aUK6FZ πµ−=              (38) 
 
where 
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is the shape factor.  Note that 22 bac −=  and 
1)b/a(

1
c
b

2o
−

==λ . 

 
 
Circular Disk 
 
 The solution for a disk of radius a moving perpendicular to its plane as shown in 
Figure 3 is obtained by letting 00 →λ  in equation (35).  i.e.,  
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Figure 3.  Schematic of a circular disk in creeping flow motion. 

 
 
The corresponding force acting on the disk is given as 
 
 aU16Fz µ−=               (41) 
 
(For more details see Happel & Brenner "Low Reynolds Number Hydrodynamics," pp. 
145-149.) 
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3. Prolate Spheroid Translating in a Quiescent Fluid 
 

The motion of a rigid prolate spheroid parallel to its axis of revolution as shown 
in Figure 4 is studied in this section.  The appropriate coordinates system for this problem 
is the prolate coordinate system ( )φθξ ,,  with 

 

 
















θξ=
ψθξ=
ψθξ=

coscoshcz
sinsinsinhcy
cossinsinhcx

.            (42) 

 

 
Figure 4.  Schematic of a prolate spheroids in creeping flow motion. 

 
For convenience, we let 

 
 ξ=τ cosh , θ=ζ cos .             (43) 
 

The surface const=τ . ( const=ξ ) are prolate spheroids. Then ρ  and z may be expressed 
as 
 
 c11 22 ζ−−τ=ρ                         (44) 
 
and 
 
 τζ= cz               (45) 
 
 Similar to the method used for the oblate spheroid, one can solve the equation of 
creeping motion in prolate spheroidal coordinates subject to appropriate boundary 
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conditions. The stream function for a prolate spheroid translating with velocity U in the 
positive z direction parallel to its axis of revolution is given as 
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 Using this expression in Equation (8), one obtains the force acting on the prolate 
spheroid, that is 
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 bUK6Fz πµ−=              (49) 
 
where the shape factor k is given by 
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Elongated Rod 
 
 When the major axis, a, is much greater than its equatorial radius, b, the spheroid 
resembles a long thin rod. For this limiting case 
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(For more detail see Happel & Brenner "Low Reynolds Number Hydrodynamics" pp. 
154-156.) 


