Pouticle Transport, Deposition and Removal

Reviegy for
 Finel Tumm

 Goodinir Ahmadi

 Goodinir Ahmadi}

Department of Mechanical and Aeronautical Engineering

\author{

Clarkson University Pobdam, NY 13609-5723

}

- Hydrodynamic Forces and Moments
- Diffusion Mechanisms
- Particle Adhesion and Detachment
- Particle Charging

Drag Forces

Cunningham Correction

$$
\mathrm{C}_{\mathrm{c}}=1+\frac{2 \lambda}{\mathrm{~d}}\left[1.257+0.4 \mathrm{e}^{-1.1 \mathrm{~d} / 2 \lambda}\right]
$$

MDI[L] T OTPCQ

$$
\operatorname{sgn}(x)= \begin{cases}+1 & x>0 \\ -1 & x<0\end{cases}
$$

Saffman $(1965,1968)$

$$
F_{L(\text { Saff })}=1.615 \rho v^{1 / 2} d^{2}\left(u^{f}-u^{p}\right)\left|\frac{d u^{f}}{d y}\right|^{1 / 2} \operatorname{sgn}\left(\frac{d u^{f}}{d y}\right)
$$

Aerosols Pripicicle Motion
 Clarkson

Equation of Motion

$$
\mathrm{m} \frac{\mathrm{~d} \mathbf{u}^{\mathrm{p}}}{\mathrm{dt}}=\frac{3 \pi \mu \mathrm{~d}}{\mathrm{C}_{\mathrm{c}}}\left(\mathbf{u}^{\mathbf{f}}-\mathbf{u}^{\mathrm{p}}\right)+\mathrm{mg}
$$

Aerosols Paricicle Motion
 Carkson
 University

$$
\tau \frac{\mathrm{d} \mathbf{u}^{\mathbf{p}}}{\mathrm{dt}}=\left(\mathbf{u}^{\mathbf{f}}-\mathbf{u}^{\mathbf{p}}\right)+\tau \mathbf{g}
$$

Relaxation Time

$$
\tau=\frac{\mathrm{mC}_{\mathrm{c}}}{3 \pi \mu \mathrm{~d}}=\frac{\mathrm{d}^{2} \rho^{\mathrm{p}} \mathrm{C}_{\mathrm{c}}}{18 \mu}=\frac{\mathrm{Sd}^{2} \mathrm{C}_{\mathrm{c}}}{18 v}
$$

Turbulent stress is negligible

$$
u^{x}=\frac{1}{20} U_{d}
$$

$$
u=\frac{u^{* 2} y}{\nu}
$$

$$
\begin{aligned}
& u^{k}=\text { shear } \\
& \text { vercity }
\end{aligned}
$$

$\frac{\nu, u^{*}}{F^{+}}=\frac{F}{\mu \nu}$

$$
\mathbf{u}^{+}=\mathbf{y}^{+}
$$

$$
0<\mathrm{y}^{+} \leq 5
$$

$$
\left.\mathbb{H}_{\mathrm{L}}^{\mathrm{L}}+\mathrm{Saff}\right)=0 \cdot 8 \cdot \overbrace{}^{+3}
$$

$$
\int^{+}=\frac{\sqrt{ } u^{k}}{\sqrt{2}}
$$

Fick's Law $\| J=-D \frac{\mathrm{dc}}{\mathrm{dx}}$

Diffusion Equation

$\partial \mathrm{c}$
$\frac{\partial \mathrm{c}}{\partial \mathrm{c}}+\mathbf{v} \cdot \nabla \mathrm{c}=\mathrm{D} \nabla^{2} \mathrm{c}$ $\partial \mathrm{t}$

Diffusivity

$\mathrm{D}=\frac{\mathrm{kTC}}{\mathrm{c}} \mathrm{h}$

- Similarity Method

- Separation of Variable Method
- Integral Method

Papticle Adinesion
mind Defernment

- van der Waals Force
- JKR Adhesion Model
- DMT Adhesion Model
- Maugis-Pollock Model
- Particle Detachment Mechanisms
- Maximum Moment Resistance

JKR IMIodel
 Clarkson
 University

Johnson-Kandall-Roberts (1971)

$$
\mathrm{a}^{3}=\frac{\mathrm{d}}{2 \mathrm{~K}}\left[\mathrm{P}+\frac{3}{2} \mathrm{~W}_{\mathrm{A}} \pi \mathrm{~d}+\sqrt{3 \pi \mathrm{~W}_{\mathrm{A}} \mathrm{dP}+\left(\frac{3 \pi \mathrm{~W}_{\mathrm{A}} \mathrm{~d}}{2}\right)^{2}}\right]
$$

Hertz Model

$$
K=\frac{4}{3}\left[\frac{1-v_{1}^{2}}{E_{1}}+\frac{1-v_{2}^{2}}{E_{2}}\right]^{-1}
$$

Derjaguin-Muller-Toporov (1975)

Pull-Off Force

$\mathrm{F}_{\mathrm{Po}}^{\mathrm{DMT}}=\pi \mathrm{W}_{\mathrm{A}} \mathrm{d}$

Contact Radius at Zero Force

$$
\mathrm{F}_{\mathrm{Po}}^{\mathrm{DMT}}=\frac{4}{3} \mathrm{~F}_{\mathrm{Po}}^{\mathrm{JKR}}
$$

Contact Radius at Separation

$$
a=0
$$

G. Ahmadi

Maugis-Pollock Model
 University

$$
\mathrm{P}+\pi \mathrm{W}_{\mathrm{A}} \mathrm{~d}=\pi \mathrm{a}^{2} \mathrm{H}
$$

$\mathrm{H}=3 \mathrm{Y}$

$\mathrm{a}^{* 3}=1-\mathrm{P}^{*}+\sqrt{1-2 \mathrm{P}^{*}}$
$\mathrm{P}^{*}=-\frac{\mathrm{P}}{\frac{3}{2} \pi \mathrm{~W}_{\mathrm{A}} \mathrm{d}}$
$\mathrm{M}^{* K R}=\mathrm{P}^{*} \mathrm{a}^{*}=\mathrm{P}^{*}\left(1-\mathrm{P}^{*}+\sqrt{1-2 \mathrm{P}^{*}}\right)^{1 / 3}$

Amposols Chi miging and IMinir Minedicic clankson

Coulomb Force

$\mathbf{F}_{\mathbf{E}}=\mathrm{q} \mathbf{E} \quad q=$ ne

Particle Mobility

$$
\mathrm{u}=\mathrm{Z}^{\mathrm{p}}=\frac{\mathrm{qC}_{\mathrm{c}}}{3 \pi \mu \mathrm{~d}}
$$

Particle Charging clarksn

Boltzmann Equilibrium Charge Distribution

$$
\mathrm{f}(\mathrm{n})=\frac{0.24}{\sqrt{\mathrm{~d} \pi}} \exp \left\{-\frac{0.05 \mathrm{n}^{2}}{\mathrm{~d}}\right\}
$$

$$
\mathrm{d}>0.02 \mu \mathrm{~m}
$$

$$
\overline{\mathrm{n}}=\approx 2.36 \sqrt{\mathrm{~d}}, \quad \mathrm{~d}(\mu \mathrm{~m})
$$

Diffiusion Charging clankon

$$
\begin{aligned}
& \mathrm{n}=\frac{\mathrm{dkT}}{2 \mathrm{e}^{2}} \ln \left[1+\left(\frac{2 \pi}{\mathrm{~m}_{\mathrm{i}} \mathrm{kT}}\right)^{1 / 2} \mathrm{n}_{\mathrm{i} \infty} \mathrm{de} \mathrm{t}\right] \\
& \mathrm{n}_{\infty}=\left[1+\frac{2\left(\varepsilon_{\mathrm{p}}-1\right)}{\varepsilon_{\mathrm{p}}+2}\right] \frac{\mathrm{Ed}^{2}}{4 \mathrm{e}} \text { as } \mathrm{t} \rightarrow \infty \\
& \hline \mathrm{C}]
\end{aligned}
$$

ME 437/537 Final Exam Dec. 02 Problem 1

(40 points) Consider a steady convective-diffusion process with a flow velocity near an absorbing wall. The governing equation is given by

$$
\mathrm{ay}^{2} \frac{\partial \mathrm{C}}{\partial \mathrm{x}}=\mathrm{D} \frac{\partial^{2} \mathrm{C}}{\partial \mathrm{y}^{2}}
$$

where D is the diffusivity and a is a constant. The boundary conditions are:

$$
\mathrm{C}(\mathrm{x}, 0)=0 \quad \mathrm{C}(0, \mathrm{y})=\mathrm{C}_{0} \text {, and } \mathrm{C}(\mathrm{x}, \infty)=\mathrm{C}_{0}
$$

i. Use a similarity variable, $\eta=\frac{y}{2(\mathrm{Dx} / \mathrm{a})^{1 / 4}}$ reduce the governing
equation and boundary conditions to the similarity form.
ii. Evaluate the concentration profile and the deposition velocity to the wall.

$$
\begin{aligned}
& a y^{2} \frac{\partial c}{\partial x}=D \frac{\partial^{2} c}{\partial y^{2}} \\
& C=C(\eta) \\
& \frac{x}{y^{2}} \sim y^{2} \quad\left(y^{\mu} /\right)^{1 / 4} \sim \eta \quad \eta=\frac{y}{2(D \times / a)^{1 / 4}} \\
& \frac{\partial c}{\partial y}=\frac{\partial c}{\partial \eta} \frac{\partial \eta}{\partial y}=\frac{\partial c}{\partial \eta}\left(\frac{1}{2(D \times 1 a)} 1 / 4\right) \\
& \frac{\partial^{2} C}{\partial y^{2}}=\frac{\partial^{2} c}{\partial \eta^{2}} \frac{1}{4\left(D \times(a)^{1 / 2}\right.} \\
& \frac{\partial y}{\partial x}=\frac{y(-1 / 4)}{2(D / 4)^{1 / 4}} x^{5 / 4} \\
& \frac{\partial c}{\partial x}=\frac{\partial c}{\partial \eta} \frac{\partial \eta}{\partial x}=\frac{\partial c}{\partial \eta}\left(-\frac{1}{4} \frac{\eta}{x}\right) \\
& =-\frac{1}{4} \frac{\eta}{x} \\
& a y^{2}\left(-\frac{1}{4} \frac{\eta}{x}\right) \frac{\partial c}{\partial y}=D \frac{\partial^{2} c}{\partial \eta^{2}} \frac{1}{4(D \times / a)^{1 / 2}} \\
& \frac{\partial \eta}{\partial y}=\frac{1}{2\left(\frac{\partial x}{a}\right)^{1 / 2}} \\
& -\frac{a y^{2} \eta}{x D}\left(\frac{D x}{a}\right)^{1 / 2} \frac{\partial C}{\partial \eta}=\frac{\partial^{2} C}{\partial \eta^{2}} \rightarrow-4 \eta^{3} \frac{\partial C}{\partial \eta}=\frac{\partial^{2} C}{\partial \eta^{2}}
\end{aligned}
$$

$$
\frac{d^{2} c}{d \eta^{2}}+4 \eta^{3} \frac{d c}{d \eta}=0 \quad C(0)=0, C(\infty)=c_{0}
$$

$$
\begin{aligned}
& \frac{\frac{d^{2} c}{\partial \eta^{2}}}{\frac{\partial c}{\partial \eta}}=-4 \eta^{3} \rightarrow \ln \frac{d c}{\partial \eta}=-\eta^{4}+\ln k \\
& \frac{d c}{d \eta}=k e^{-\eta^{4}} \quad c(0)=0 \\
& C=k \int_{0}^{\eta} e^{\eta} d \eta_{1}^{4}+A^{\eta}, \quad C_{0}=k \int_{0}^{\infty} e^{-\eta_{1}^{4}} d \eta_{1} \\
& C=c_{0} \frac{\int_{0}^{n} e^{-\eta_{1}^{4} d \eta_{1}}}{\int_{0}^{\infty} e^{-\eta_{1}^{4} d \eta_{1}}} \\
& J=\left.D \frac{d c}{d y}\right|_{\partial=0}=\left.D \frac{d C}{d \eta}\right|_{\eta=0} \frac{d \eta}{d y}=D \frac{C_{0}}{\int_{0}^{\infty} e^{-\eta_{1 / 2}^{4} d y \text {, G. Ahmadi }} \frac{1}{2(D X /)^{/ 4}}}
\end{aligned}
$$

$$
u_{d}=\frac{J}{c_{0}}=\frac{D}{2\left(\frac{D x}{a}\right)^{1 / 4}} \frac{1}{\int_{0}^{\infty} e^{-\eta_{1}^{4}} d \eta_{1}}
$$

Problem 2

(35 points) Consider a $12 \mu \mathrm{~m}$ silicon particle that is attached to a silicon wafer in a turbulent air flow with a shear velocity of $2 \mathrm{~m} / \mathrm{s}$.
i. Evaluate the drag, the Saffman lift and the hydrodynamic moment acting on the particle in wall units and in SI units.
ii. Evaluate the pull-off force as predicted by the JKR model.
iii. Find the contact radius at zero force and at the separation according to the JKR model.
iv. Is the particle going to be removed by the rolling mechanism? (Assume $\mathrm{u}^{+}=\mathrm{y}^{+}$, and for silicon use $\mathrm{W}_{\mathrm{A}}=$ $0.0389 \mathrm{~J} / \mathrm{m}^{2}, \mathrm{E}=1.79 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, and Poisson ratio of 0.27 . The kinematic viscosity of air is $v=1.5 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$)

$$
\begin{aligned}
& d=12 \mu \mathrm{~m}, u^{*}=2 \mathrm{~m} / \mathrm{s}, \quad d^{+}=\frac{d u^{*}}{\nu}=\frac{12 \times 10^{-6} \times 2}{1.5 \times 10^{-5}} \\
& d^{t}=1.6 \\
& F_{t}=\frac{3 \pi \mu d V f_{c}^{f}\left(E_{q} .722\right)^{\prime}}{C_{c}} \\
& C_{D}=1 \\
& F_{t}=\frac{3 \pi(1.2) \mu d u^{* 2 d}}{2 \gamma C_{c}} \\
& \begin{array}{l}
=\frac{3 \pi(1.7) \rho d^{2} u^{* 2}}{2 c_{c}}=\frac{2.9 \pi \rho d^{2} u^{* 2}}{c_{c}}=y^{+} \\
(26)
\end{array} \\
& u^{+}=y^{+} \quad U^{+}=\frac{d^{+}}{2} \\
& C_{c}=1 \text { for } d=12^{n-} \\
& F_{t}^{t}=\frac{F_{t}}{\mu \nu}=2.9 \pi \frac{\mathrm{~d}^{2}}{c_{c}}=9.11 \mathrm{~d} t^{2}=23.22 \\
& F_{t}=\mu \nu F_{t}^{+}=1.2\left(1.5 \times 10^{-5}\right)^{2} 23.22=\overline{6.297 \times 10^{-9} \mathrm{~N}} \\
& \mu=\mathcal{V}_{1.2}^{\rho \nu}
\end{aligned}
$$

Lift

$$
\begin{aligned}
& F_{L}^{+}=0.807 d^{+3}=3.31, \quad F_{L}=\mu \nu F_{L}^{+}=8.92 \times 10^{-10} \mathrm{~N} \\
& M=1.07 \pi \rho \frac{u^{* 2} d^{3}}{C_{c}}\left(E_{9} .301=3.36 \rho u^{*^{2}} d^{3}\right. \\
& M^{+}=\frac{M}{\rho \nu^{3} U_{u}^{*}}=3.36 \mathrm{~d}^{3}=13.77 \\
& M=2.79 \times 10^{-14} \mathrm{~N} \cdot n
\end{aligned}
$$

ii) $F_{n_{0}}^{7 k i}=\frac{3}{4} \pi \omega_{A}^{d}=\frac{3}{4} \pi(0.0389) 1.2 \times 10^{-5}=1.1 \times 10^{-6} \mathrm{~N}$
i(c)

$$
\begin{aligned}
& K=\frac{4}{3} \frac{E^{A}}{2\left(1-\nu^{2}\right)}=1.287 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2} \\
& a_{0}=\left(\frac{3 \pi w_{A} d^{2}}{2 K}\right)^{1 / 3}=5.0 \times 10^{-8} \mathrm{~m}=0.059 \mu \mathrm{~m} \\
& a=a_{0} / 41 / 3=0.0372 \mathrm{\mu m}
\end{aligned}
$$

\therefore Partich is Removed!

Problem 3

(25 points) Consider a cloud of $12 \mu \mathrm{~m}$ quartz particles with a concentration of 10^{5} particles per cm^{3}.
i. Find the average absolute number of charge for the equilibrium Boltzmann distribution.
ii. Determine the number of particles that will carry 5 positive charges. How many will carry no charges in this case?
iii. Find the mean electrostatic precipitation velocity for a field of $400 \mathrm{Volt} / \mathrm{cm}$ for particles with the average absolute charge distribution.
iv. Find the terminal velocity of these particles and compare with the electrostatic precipitation velocity.
(The density of air is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$, the density ratio of quartz particle to air is 2000, and charge of electroneis 1.59×10^{-19} Coul.)

$$
d=12 \mu \mathrm{~m}, \quad c_{0}=10^{5} \mathrm{H} / \mathrm{cm}^{3}
$$

${ }^{\text {i) }} \bar{n}=2.36 \sqrt{d}=2.36 \sqrt{12}=8.17$
ii) $f(n)=\frac{0.24}{\sqrt{\pi d}} e^{-0.058 n^{2} / d}=0.0391 e^{-0.00483}$

$$
f(0)=0.0391 \quad N_{0}=3910
$$

$$
f(5)=0.0346 \quad N_{0}=3460
$$

i(i) $u=\frac{E q C_{c}}{3 \pi \mu d}$

$$
\begin{aligned}
& u=\frac{40000(8.17)\left(1.59 \times 10^{-19}\right)}{3 \pi\left(1.8 \times 10^{-5}\right) 1.2 \times 10^{-5}}=2.55 \times 10^{-5} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& u=25.5 \mathrm{~mm} / \mathrm{s}
\end{aligned}
$$

iv)

$$
\begin{aligned}
& u_{t}=r g=\frac{s d^{2}}{182} g=\frac{2000\left(12 \times 10^{-6}\right)^{2} \cdot 9.81}{18\left(1.5 \times 10^{-5}\right)} \\
& u_{t}=1.05 \times 10^{-2} \mathrm{~m} / \mathrm{s}=1.05 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

