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Coagulation of Particles

Aerosol particles collide due to their random motions and coalesce to form larger
chains of flocs made up of many particles.  The Brownian (thermal) motion of particles,
turbulence, presence of a shear field, and external forces such as gravity and electrical
forces could cause coagulation.

Coagulation of Monodisperse Spheres

Smoluchowski was the first to develop a model for the coagulation of
monodispersed spherical aerosols.  He considered the reference particle to be fixed as
shown in Figure 1.  The other particles would then diffuse to the reference particle by the
action of the Brownian motions.  The concentration then satisfies the following diffusion
equation:
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subject to boundary conditions

0c =  at dr = ,        (2)

0cc =  at 0t = , or •Ær .        (3)

Here, d  is the diameter of the particle and 0c  is the concentration far away.  Equation (2)

assumes sticking of particles without rebound upon contact.

Figure 1.  Schematic of Brownian coagulation of monodispersed particles.

Equation (1) may be restated as
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The concentration field then is given by
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The flux to surface of the reference particle is given by
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=  is the flux and I  is the total flux to the surface of the reference particle

per unit time. Using (5), it follows that

˙
˚

˘
Í
Î

È

p
+p=

Dt

d
1dDc4I .         (7)

For large 
D

d
t

2

p
>> ,

dDc4I p= .        (8)

In reality, the reference particle is not fixed and is diffusing itself.  The relative
diffusivity of two particles is sum of their diffusivities.  That is according to Einstein's
equation
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In the derivation of (9) it is assumed that 0xx ji = , because the motions of the two

particles are independent.  Therefore, in a time dt , the reference particle collides with

cdtdDcdt8 b=p      (10)
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particles.  Here, b  is the collision frequency function.  With c  particles per unit volume,

there will be 
2

c
 collisions if all the particles collide once.  Assuming that the particles

stick to each other upon collision, it follows that

2c
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where
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is the collision frequency function of coagulation constant.

Equation (11) may be solved. i.e.,
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Here, ht  is the half-value time, which is the time that the concentration becomes half of
its original value.

Coagulation of Many Sizes

Consider an aerosol, which initially consists of particles of different sizes.  The
concentration of the kth size particle then satisfies the following equation:
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where the first term on the right hand side is the generation rate of the kth particle by
combination and the second term is the loss of kth particle due to coalescence. Here, kjb

is the collision frequency function  (coagulation parameter)for particles with diameters

jd  and kd  shown in Figure 2 and  is given by



4

dj dk

( )( )kjkjkj DDdd2 ++p=b      (16)

The corresponding values of ( )kjkj d,db  are listed in Table 1.

Figure 2.  Brownian coagulation of dissimilar particles.

Table 1.  Collision frequency function ( ) s/cm10d,d 310
kj ¥b .

)m(d2 m

)m(d1 m

3102 -¥ 3104 -¥ .01 .02 .04 0.1 0.2 0.4 1 2 4 10 20

0.002 2.25
0.004 3.75 3
.01 15 7.5 4.5
.02 45 20 7.5 6
.04 150 55 17.5 8.5 5.5
0.1 800 275 60 20 7.5 3.6
0.2 2500 700 135 40 12.5 4 2.6
0.4 6500 2050 300 85 23.5 5.5 2.65 2
1 18500 4750 800 210 57.5 12 4.5 2.35 1.7
2 38500 10000 1600 420 115 22.5 8 3.55 1.85 1.6
4 80000 20000 3300 850 225 45 15 6 2.6 1.75 1.5
10 200000 50000 8000 2150 550 110 36 14 5.15 2.8 1.85 1.5
20 400000 100000 15000 4250 1100 215 70 27 8.5 4.8 2.75 1.65 1.5

Effect of Particle Force Field

The particle force field will modify the collision frequency. It may be shown that
the collision distribution function is given as (Friedlander, 2000)
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Here, ( )rf  is the potential energy of the central force per unit mass with
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Van der Waals Force

The potential energy for the attractive van der Waals force is given by
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where r  is the distance between the centers of the sphere and A  is the Hamaker constant.

For monosize particles,
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The increase of collision frequency with 
kT

A

p
 is shown in the figure:

(Diagram Here)

Coulomb Forces

For charged particles, the Coulomb force potential is given as

r
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where iz  is the number of charges, e  is the electronic charge, and e  is the dielectric
constant of the medium.

The expression for W  then is given by
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is the ratio of the electrostatic potential energy at contact to the thermal energy kT .

For 0y = , 1W = . For charges of opposite sign, y  is negative and 1W0 <<  and
hence collision rate increases. When charges have the same sign, 0y >  and 1W >  and
the collision rate decreases.
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For large numbers of charged particles, the coulomb potential must be modified to
account for Debye shielding effects. Accordingly, equation (26) is replaced by
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Shear Flows

The collision frequency function due to shear flow is given as
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Turbulence

Saffman and Turner suggested that
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where e  is the dissipation rate and n  is the kinematic viscosity.  For pipe flows (core
region),
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where V  is the mean velocity, f  is the friction factor, and R  is the pipe radius. Average
dissipation rate for the pipe is given as
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Differential Motion by Gravitational Force

For particles falling according to Stokes settling velocity, the collision frequency
function is given by
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Electrical Double Layer Interactions for Colloidal Systems

Most colloidal particles carry electrostatic charges. Since the dispersion as a
whole is neutral, there must be an excess of ions of opposite charge in the solution. These
excess ions are found near the surface of suspended colloidal particles and form what is
called a "diffused electrical double layer." The double layer has a profound effect on
interactions of colloidal particles.

Ion Distribution Near a Colloidal Particle

Consider the diffusion of ions near a charged surface. The convective diffusion
equation for the number concentration, in , of ion i  is given as

( ) ( )iii nnD iu⋅—=—⋅— ,        (1)

where iD  is the diffusivity and iu  is the velocity due to the electric field. Force balance
of a single ion gives
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where m  is the viscosity, id  is the diameter, cc  is the slip correction, e  is the unit

electric charge, iz  is the valency of ion i  and E  is the electric field strength given as

y-—=E        (3)

and y  is the electric field potential.

Equation (2) leads to
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is used. Using (3) and (4) in (1), we find
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Integrating (7), one finds
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the well-known Boltzmann distribution. Note that the potential ( )xy=y .

Using Coulomb's law and equation (3), we find

e

r
-=y— e2        (9)

where e  is the permittivity (dielectric constant times permittivity of free space), and er

is the charge density given as
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Using (10) in (9), the Poisson-Baltzamann equation follows, i.e.
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Solution of (11) gives y  and in . Equation (11) is restricted to low electrolyte
concentrations, since ions are treated as point charges.

Debye-Huckel Approximation

For low potential kTezi <<y  and
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Using (12) in (11) and noting the neutrality condition of the burk suspension,
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it follows that
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is the Debye-Huckel parameter.

The solution of (14) for double layer adjacent to a flat plate is given as

x
0e k-y=y .      (16)

For double layer near a spherical particle of radius a ,
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In (16) and (17), 0y  is the potential at the surface, and y  decays with distance from the

surface. The characteristic length is 1-k  (Debye length) double layer thickness. The
concentration of electrolyte is related to 0in  by

0iA0i cN1000n = ,      (18)

where 0ic  is the bulk concentration of ions of species i  (in mol/L) and 23
A 1002.6N ¥=

is Avogadro's number. Typically, 1-k  varies from less than 1 nm to about 100 nm.

Gouy-Chapman Theory

An exact solution of Poisson-Baltzmann equation for symmetric electrolytes for
which

zzz =-= -+      (19)

and
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00 nn -+ =      (20)

was found by Gouy-Chapman for double layer near a place. In this case, equation (11)
reduces to
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The solution to (21) is
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The surface charge density, s , may be related to surface potential 0y , i.e.
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for y  given by (22) and

0eky=s      (25)

for y  given by (16). This means that the double layer may be considered as a capacitor

consisting of two plates a distance of 1-k  apart.

For spherical particles, the surface charge density is
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and the total surface charge of the sphere becomes

( ) 0e a1a4Q yk+pe= .      (27)
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Electrostatic Double Layer Interactions

Colloidal particles carrying the same surface charges cause double layer
repulsion.

Constant Potential Interactions

The interaction energy for two spheres of radii 1a  and 2a  and potentials 01y  and

02y  at infinite separation is given as
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where e  is the dielectric constant of the medium, h  is the distance of minimum approach
and 1-k  is the double layer thickness. Equation (28) holds for mV250 <y  and

1
1 a<<k- , 2a .

For sphere-plate the interaction energy is twice that of sphere-sphere, i.e.,
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The corresponding force (repulsion) is
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For materials with 00201 y=y=y , equation (30) becomes

h

h2
0

ps e1

xea
F

k-

k-
y
- +

ye
= .      (31)

Constant Charge Interactions

The repulsion interaction energy of two colloidal particles with constant surface
charge density is given as
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The corresponding sphere-plate force is
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When 00201 y=y=y ,
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In practice, 0y  is not known and usually it is assumed that

potentialticElecrokinepotential0 =-x=y .      (35)

(Diagram Here)

Two Spheres Interactions

Constant Potential (Deryaguin)
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Linear Superposition (Debye-Huckel)
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Superposition (thin double layer)
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Electrokinetic Phenomena

Electrokinetic phenomena occur when there is relative motion between the
charged interface and the adjacent electrolyte solution so that part of the double layer
charge moves with the liquid. The "plane of shear" separates the mobile part of the
double layer from the fixed part. The electrical potential at the shear plane is the
electrokinetic potential or the zeta potential ( x -potential).

Electro-Osmosis

Elecro-osmosis is the flow of liquid due to influence of an applied electric field.
Assume an electric field E  is applied parallel to a surface. If the charge density is er , it

follows that
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(Diagram Here)

Using (9) to replace er  in term of ( )yy , (
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where 0eu  is the electro-osmosis velocity and we assumed that at 0y = ,

0u = , x=y .      (45)

Particle Electrophoresis

Particle electrophoresis is the movement of charged particles in an electric field.
For thin double layer ( 1a >>k ),
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which may be restated in terms of the electrophoretic mobility, U  (velocity for unit field)
as

m

ex
=U .      (47)

This is known as Smoluchowski equation.

For small particles with 1a <<k , the viscous drag must be balanced by the
Coulomb force, i.e.
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where equation (27) is used for total charge and 0y  is replaced by x .

It then follows that
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which is known as the Huckel equation. More generally, then
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where ( )af1 k  varies from 1 to 1.5 for ak  varying between 0 to • .

Born Repulsion

At very short distances, the interpenetration of electron shells leads to the strong
repulsive force known as the Born repulsion. The corresponding interaction energy is
given as
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for sphere-plate where cs  is the collision diameter (typical of the order of 
o

A5 ).

DLVO Theory of Colloidal Stability

The theory of colloidal stability was developed by Deryaguin, Landau (1941),
Verway, and Overbeak (1948) and is now known as the DLVO theory.
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The interaction potential between particles is composed as the sum of van der
Waals, AV , electrical double layer, RV , and Born, BV , i.e.

BRAT VVVV ++=      (51)

Depending on the magnitude of van der Waals and electrical double layer potential
energies, the suspension could be stable or could rapidly aggregate.

Figure (a) shows a stable suspension where a strong energy barrier (EB) is formed. There
is a deep primary minimum (SM). The secondary minimum could lead to weak
aggregation which will break easily.

(Diagram Here)

Figure (b) shows the total potential for a colloidal system for which the electrical double
layer is weak or absent. The particles will attract each other and the suspension will
aggregate quickly.

(Diagram Here)

Steric Interaction

A colloidal suspension could remain stable when the particles absorb polymetric
chains.

Hydrophobic Interaction

There is an attraction between hydrophobic surfaces as a result of water molecules
migrating from the gap to the bulk.

Hydration Effects

At very short distances, hydrophilic surfaces may experience hydration repulsion.
This is because of the need for the surfaces to become dehydrated for the particles to
come in contact.


