STARTING WITH FLUENT-4

Grid Generation (FLUENT-4)

Define \rightarrow Allocate (Allocate the maximum number of grid, 15000 default). Define \rightarrow Domain (Specify dimension and grid size). Define \rightarrow Cell \rightarrow Display (Display the computational grid) \rightarrow Use left mouse to mark cells and specify inlet and outlet. (You can also add walls and/or additional inlet or outlets).

Setup Boundary Conditions and Model (FLUENT-4)

Define \rightarrow Boundary Conditions \rightarrow Inlet velocity \rightarrow Set (Specify inlet velocity boundary condition).

Define \rightarrow Model (You can modify the model and use turbulence models as needed). Solve \rightarrow Iterate (specify number of iterations)

Displaying Results (FLUENT-4)

Solve \rightarrow Monitor (To view convergence).

Display \rightarrow Contours (To view pressure, velocity, etc contours plot. You have the choice of filled or unfilled contours). (Right mouse move the objects, middle mouse changes size).

Display \rightarrow Vectors (To view velocity vector plots).

Plot \rightarrow (To plot xy-plots).

Save and Hard Copy (FLUENT-4)

File \rightarrow Write (CAS and DAT files) (Saving the cas and dat files).

File \rightarrow Read (CAS and DAT files) (Reading existing cas and dat files).

File \rightarrow hardcopy \rightarrow (Color, Tiff) save the picture on the graphic box in tiff format for hard copy printing.

FLUENT-6

FLUENT-6 provides more flexibility as it can handle unstructured grid and body fitted coordinates. The geometry and the mesh have to be developed in GAMBIT code. It can then be imported into fluent.