1. (35 points) Consider a one-dimensional diffusion process with a space dependent diffusivity in the absence of a flow field. The governing equation is given by

$$\frac{\partial \mathbf{c}}{\partial \mathbf{t}} = \frac{\partial}{\partial \mathbf{y}} \left(\mathbf{D} \, \frac{\partial \mathbf{c}}{\partial \mathbf{y}} \right)$$

Assume that $D=\alpha y$, and an initially uniform concentration of aerosols in the neighborhood of an absorbing wall. The initial and boundary conditions are: $C(y,0)=C_0$ and C(0,t)=0.

- a) Use a similarity variable $\eta = \frac{y}{\alpha t}$, reduce the governing equation and boundary conditions to the similarity form. b) Does this equation accept a similarity solution? c) Justify your solution.
- 2. (35 points) Consider a fully developed laminar boundary layer flow over of a dilute gassolid mixture over a flat plate with suction. Assume that the free stream velocity is U_o , the free stream concentration is C_o , and the suction velocity at the surface of the plate is $-V_o$. a) Show that $u = U_o(1 e^{-yV_o/v})$, $v = -V_o$ are the exact velocity field in the boundary layer. b) Find the fully developed concentration profile C(y) in terms of particle diffusivity and suction velocity $-V_o$. c) Evaluate the expression for particle deposition velocity and concentration boundary layer thickness.
- 3. (30 points) Consider a 0.03 μ m particles of density of 2000 kg/ m³ in air under normal condition.
 - i. Find the terminal velocity with and without Cunningham correction.
 - ii. Determine the diffusivity.
 - iii. Find the intensity of Brownian excitation for a Δt of 10^{-6} s.
 - iv. When the particle is falling in a shear field of 1000 s⁻¹, find the Saffman lift force.

(Assume a kinematic viscosity of 1.5×10^{-5} m²/s, a temperature of 300 K, and λ =0.07 μ m. For other needed parameters assume a typical value.)