1. Assuming that the size of air molecules is about 0.36 nm , evaluate the mean free path of air, and the mean distance between the molecules. (The number density of air is 2.5×10^{19}.)
2. Find the rising velocity of a 0.1 mm bubble in a glass of beer. Find the bubble Reynolds number. Is the flow around the bubble in Stokes regime?
3. Find the aerodynamic diameter of a particle made up of four sphere a tight cluster of four $10 \mu \mathrm{~m}$ spheres with density 1 .
4. A dentist drill with a diameter of 1 mm rotates at $50,000 \mathrm{rpm}$. How far can the drill throw a $40 \mu \mathrm{~m}$ spherical piece of patient tooth?
5. Determine the settling velocity of $0.5 \mu \mathrm{~m}$ silica particles with a density of $2600 \mathrm{~kg} / \mathrm{m}^{3}$ with and without the effect of Cunningham correction factor.
6. Assume that a particle is moving on a circular path at a constant speed. Evaluate it radial terminal velocity. For the case that a $10 \mu \mathrm{~m}$ particle is moving on a 0.5 m diameter orbit at 100 rpm evaluate the particle radial velocity and radial stopping distance.
