ME437/ME537 HW SET 2

- 1. For a particle of mass m in an air stream with a constant velocity \mathbf{u}^{f} and in gravitational field, evaluate the velocity and position vectors of the particle as a function of time. Also evaluate the terminal velocity of the particle when a constant velocity \mathbf{u}^{f} is present.
- 2. Show that the mean square response of particle position given by $\overline{x^{2}(t)} = \int_{0}^{t} \int_{0}^{t} R_{uu}(\tau_{1} - \tau_{2}) d\tau_{1} d\tau_{2} \text{ may be restated as } \overline{x^{2}(t)} = 2 \int_{0}^{t} (t - \tau) R_{uu}(\tau) d\tau \text{ , and the}$ diffusivity is given by $D = \int_{0}^{\infty} R_{uu}(\tau) d\tau$.
- 3. Evaluate the concentration of uniform size spheres with a constant terminal velocity v^t . Assume that $c = c_o$ at $x = x_o$, and c = c(x) with x being in the vertical direction. Note that the generalized mass diffusion equation is given as $\frac{\partial c}{\partial t} + (\mathbf{v} + v^t) \cdot \nabla c = D\nabla^2 c$
- 4. Consider the case of diffusion to a wall governed by $\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial y^2}$, c(0,t) = 0, $c(\infty,t) = c_0$ and $c(y,0) = c_0$. Use the integral method with an approximate expression for the profile given by $\frac{c}{c_0} = 2 \frac{y}{\delta_c} - (\frac{y}{\delta_c})^2$ and evaluate the variation of diffusion boundary layer thickness δ_c with time.
- 5. Evaluate the variation of concentration with space and time in a region between two parallel plates with an initially uniform concentration. Note that $\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial y^2}$, c(0,t) = 0, c(b,t) = 0 and $c(y,0) = c_0$. [Hint: use the method of separation of variables.]
- 6. The diffusion equation in cylindrical coordinate is given as $\frac{\partial c}{\partial t} = \frac{D}{r} \frac{\partial}{\partial r} (r \frac{\partial c}{\partial r})$. Reduce the diffusion equation to a similarity form by assuming that $c(r,t) = \frac{1}{r} z(\eta)$, where $\eta = \frac{r}{r/4Dt}$.
- 7. Develop a sample white noise for Brownian excitation acting on 0.05 μm particles in air at room temperature. Evaluate a sample particle trajectory when the there is a uniform air flow velocity of 0.1 m/s in x direction.