Diffusion to a Cylinder

Stream Function

\[\psi = AU \sin \theta \left[\frac{r}{a} - (2 \ln \frac{r}{a} - 1) + \frac{1}{r} \right] \]

\[\psi = \frac{1}{\sqrt{2 \ln R}} \quad \text{Re} \ll 1 \]

Outline

- Diffusion to a Cylinder in Cross Flow
- Deposition Velocity
- Interception
- Filtration

Diffusion Equation

\[v_0 \frac{\partial c}{\partial \theta} + v_r \frac{\partial c}{\partial r} = \frac{D}{\partial^2 c} + \frac{1}{r} \frac{\partial c}{\partial r} \]

Boundary Conditions

- \[r = a + \frac{d}{2}, \quad c = 0 \]
- \[r = \infty, \quad c = c_o \]
Diffusion to a Cylinder

Diffusion Equation
\[u \frac{\partial c}{\partial x} + v \frac{\partial c}{\partial y} = D \frac{\partial^2 c}{\partial y^2} \]

Boundary Conditions
- \(y = 0, \quad c = 0 \)
- \(y = \infty, \quad c = c_\infty \)

Stream Function
\[u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x} \]

Using \(x \) and \(\psi \)
\[\frac{\partial c}{\partial x} = D \left(\frac{\partial}{\partial y} \left[u \frac{\partial c}{\partial \psi} \right] \right) \]
\[\psi \approx 2AaUy^2 \sin x \]

Similarity Equation
\[\psi = \left(\frac{\psi_1}{\chi} \right)^{2/3} \]
\[c = \frac{c_\infty (AP_e)^{1/3}}{1.45} \int_0^\xi \exp\left\{ -\frac{2}{9}AP_e z^3 \right\} dz \]
\[P_e = \frac{2Ua}{D} = R_e \cdot S \]
Diffusion to a Cylinder

Sherwood Number

\[\text{Sh} = \frac{\bar{h}(2a)}{D} = 1.17(APe)^{1/2} \]

Collection Efficiency

\[\eta_R = \frac{\bar{h}(2a)c_{\infty}}{(2a)Uc_{\infty}} = 3.68A^{1/3}Pe^{-2/3} \]

\[\eta_R \sim d^{-2/3} \]

Direct Interception Limit

No Diffusion

\[R = \frac{d}{2a} \]

\[\int U \left| \frac{\partial y}{\partial x} \right| dx = \frac{2}{3} \pi a^2 U \]

\[\eta_R = \int \left[\eta_R(2a)c \right] \left(\frac{1}{\pi a} \right) \frac{dC}{C} = 2AR^2 \]

Fiber Efficiency

\[dc = - \left[\eta_R(2a)c \right] \left(\frac{1}{\pi a} \right) \frac{dC}{C} \]

\[\eta_R = \frac{\pi a}{2UL} \ln \left(\frac{c_1}{c_2} \right) \]

Variations of Sherwood number and collection efficiency with Peclet number.
Empirical Equation

\[\eta_r (R_P e) = 1.3R_P e^{1/3} + 0.7(R_P e^{1/3})^3 \]

- \(P_e \to \infty \) \(\eta_R \propto R^2 \)
- \(P_e \to 0 \) \(\eta_R \propto P_e^{-2/3} \)

Conclusions

- Deposition by Diffusion to a Cylinder
- Deposition by Interception to a Cylinder
- Fiber Filter Efficiency

Variation of filter collection efficiency.