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Incompressible Viscous Flows 
 

For an incompressible fluid, the continuity equation and the Navier-Stokes 
equation are given as 
 

0=⋅∇ v ,                    (1) 
 

 vvvv 2P1
t

∇ν+∇
ρ

−=∇⋅+
∂
∂ .             (2) 

 
Using a vector identity, Equation (2) may be restated as 
 

 ( ) vvvv ×∇×∇×∇ν−=×∇×−∇+
∂
∂

2
v

t

2

            (3) 

 
Define vorticity 
 
 vω ×∇=                 (4) 
 
and taking curl of (3) we find 
 

 ( ) ωωvω ×∇×∇ν−=××∇−
∂
∂

t
.             (5) 

 
Noting that curl of gradient is zero and 
 
 ( ) ( ) ( ) ωvvωωvvωωv ∇⋅−∇⋅+⋅∇−⋅∇=××∇            (6) 
 
Equation (5) may be restated as 
 

 ωvωωvω 2∇ν+∇⋅=∇⋅+
∂
∂

t
             (7) 

 
Equation (7) is the vorticity transport equation.  It shows that in addition to being 
convected and diffused, vorticity is also generated by the first on the right hand side of 
Equation (7) by a vortex stretching mechanism.   
 
 
Two-Dimensional Plane Flows 
 
 For two dimensional flows in xy-plane as shown in Figure 1, let 
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 ( ) ji

kji

kv
xy

00
zyx ∂

ψ∂−
∂
ψ∂=

ψ
∂
∂

∂
∂

∂
∂=ψ×∇= ,            (8) 

 
 

       y   v     V 
           u 
 
            x 
 
 

Figure 1.  Schematics of plane flows in a Cartesian coordinate system. 
 
 
That is 
 

 
y

u
∂
ψ∂= , 

x
v

∂
ψ∂−= ,               (9) 

 
and Equation (1) is satisfied. 
 

The nonzero element of ω  is 
 

 ψ−∇=
∂
∂−

∂
∂=ω=ω 2

Z y
u

x
v .             (10) 

 
Equation (7) in two-dimensional case reduces to 
 

 ω∇ν=
∂
ω∂+

∂
ω∂+

∂
ω∂ 4

y
v

x
u

t
.            (11) 

 
Using (10), Equation (11) may be restated as 

 

 ψ∇ν=ψ∇
∂
∂

∂
ψ∂−ψ∇

∂
∂

∂
ψ∂+ψ∇

∂
∂ 4222

yxxyt
.         (12) 

 
or 
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 ( )
( ) ψ∇ν=

∂
ψψ∇∂+ψ∇

∂
∂ 4

2
2

y,x
,

t
.           (13) 

 
Equation (13) is the equivalent to the Navier-Stokes equation and contains a single 
unknown ψ . 
 
 
Plane Flows in a Cylindrical Geometry  
 
 
Case (a) 0vz =  and rv  and θv  are functions of r  and θ . 
 

       y        V  

           vθ   
                         vr 
            r   
         θ           x 
 
 
 
 

Figure 2.  Schematics of plane flows in a polar coordinate system. 
 

 
For a plane flow in cylindrical geometry as shown in Figure 2, let 

 
 ( )( )θψ×∇= ,rzev .             (14) 
 
That is, 
 

 θr eev
rr

1
∂
ψ∂−

θ∂
ψ∂= ,             (15) 

 
or 
 

 
θ∂
ψ∂=

r
1vr , 

r
v

∂
ψ∂−=θ             (16) 
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The nonzero element of ω  is given by 
 
 ψ−∇=ω=ω 2

z                         (17) 
 
where 
 

 2

2

2
2

r
1

r
r

rr
1

θ∂
ψ∂+








∂
ψ∂

∂
∂=ψ∇             (18) 

 
Equation (7) now becomes 
 

 ω∇ν=
θ∂
ω∂+

∂
ω∂+

∂
ω∂

θ
2

r r
1v

r
v

t
.           (19) 

 
Using (17), Equation (19) may be restated as 

 

 ψ∇ν=ψ∇
θ∂
∂

∂
ψ∂−ψ∇

∂
∂

θ∂
ψ∂+ψ∇

∂
∂ 4222

r
1

rrr
1

t
,         (20) 

 
or 
 

 ( )
( ) ψ∇ν=

θ∂
ψψ∇∂+ψ∇

∂
∂ 4

2
2

,r
,

r
1

t
.           (21) 

 
Equation (21) is the equation governing ( )θψ ,r  in plane flows expressed in polar 
coordinated system. 
 
 
Case (b) 0v =θ , rv and v z  are functions of r  and z . 
 

        z  

           vz   V 
                          vr 
 
 

         r 
 
 
 
Figure 3.  Schematics of axisymmetric flows in a cylindrical coordinate system. 
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For an axisymmetric flow in cylindrical coordinates, let 
 

( )





 ψ×∇= z,r

rθev              (22) 

 
That is 
 

 zr eev
rr

1
zr

1
∂
ψ∂+

∂
ψ∂−= ,            (23) 

 
or 
 

 
rr

1vz ∂
ψ∂= , 

zr
1vr ∂

ψ∂−= .            (24) 

 
The vorticity define by Equation (4) now becomes 

 

 















∂
ψ∂

∂
∂+

∂
ψ∂−=








∂
∂

−
∂
∂

=×∇=
rr

1
r

r
zr

1
r

v
z
v

2

2
zr

θθ eevω         (25) 

 
Thus, the only nonzero component of vorticity is given by 
 

 ψ−=ω=ωθ
2E

r
1 ,             (26) 

 
where 
 

 2

2

2

2
2

zrr
1

r
E

∂
ψ∂+

∂
ψ∂−

∂
ψ∂=ψ .            (27) 

 
Equation (7) may now be restated as 
 

 ( ) .comp
r

zr |
r

v
z

v
r

v
t −θθ

θθθθ ω×∇×∇ν−=ω−
∂
ω∂+

∂
ω∂+

∂
ω∂

θe         (28) 

 
Using (26) in (28) we find 
 

 ( ) ( ) ( ) ψν=ψ
∂
ψ∂+ψ

∂
∂

∂
ψ∂+ψ

∂
∂

∂
ψ∂−ψ

∂
∂ 42

2
222 EE

zr
2E

zrr
1E

rzr
1E

t
       (29) 

 
or 
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 ( ) ( )
( ) ψν=ψ

∂
ψ∂+

∂
ψψ∂−ψ

∂
∂ 42

2

2
2 EE

zr
2

z,r
,E

r
1E

t
         (30) 

 
Equation (30) governs ( )z,rψ  in axisymmetric cylindrical flows. 
 
 
 
 
Spherical Coordinates 
 
 Spherical coordinate system is shown in Figure 4.   Here 
 

 








θ=
ϕθ=
ϕθ=

sinrz
sincosry
coscosrx

             (31) 

 

 
Figure 4. Schematics of spherical coordinate system. 

 
 
 Consider the case when 0v =ϕ  and rv  and θv  are only functions of r  and θ . 
 
Let 
 

 
( )









θ
θψ

×∇= ϕ

sinr
,re

v ,             (32) 

 
That is 
 

r 

θ
ϕ

x 

y

z
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 θr eev
rsinr

1
sinr
1

2 ∂
ψ∂

θ
−

θ∂
ψ∂

θ
=            (33) 

 
or 
 

 
θ∂
ψ∂

θ
=

sinr
1v 2r , 

rsinr
1v

∂
ψ∂

θ
−=θ .           (34) 

 
The vorticity equation will reduce to 
 

 ( ) ( )
( ) ψν=






 θ

θ∂
ψ∂−θ

∂
ψ∂

θ
ψ+

θ∂
ψψ∂

θ
+ψ

∂
∂ 4

22

22

2
2 Esin

r
1cos

rsinr
E2

,r
,E

sinr
1E

t
,      (35) 

 
where 
 

 
θ∂
∂θ−

θ∂
∂+

∂
∂= 22

2

22

2
2

r
cot

r
1

r
E .           (36) 

 
 
Intrinsic Coordinates 
 
 It is sometimes simpler to work with a coordinate system, which is attached to the 
surface of revolution.  For the body of revolution shown Figure 5, consider the unit 
vectors n , s , ϕe .  For this system the metrics are 
 
 1hh n1 == ,     ρ== ϕhh 2 ,      1hh s3 ==                      (37) 
 
Thus 
 

 
ϕ∂
Φ∂

ρ
+

∂
Φ∂+

∂
Φ∂=Φ∇ ϕ

1
sn

esn            (38) 

 
The stream function for axisymmetric flows may now be introduced as 
 

 ( ) snev
n

1
s

1n,s
∂
ψ∂

ρ
+

∂
ψ∂

ρ
−=








ρ

ψ×∇= ϕ           (39) 

 
That is 
 

 
s

1vn ∂
ψ∂

ρ
−= , 

n
1vs ∂

ψ∂
ρ

=             (40) 
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                    z  

                   n  
           ρ           eφ    
                                                    s 
 

                      ρ 
 

     φ 
 
 
 

Figure 5.  Schematics of intrinsic coordinate systems. 
 
 
The vorticity is now given as 
 

 ψ
ρ

−=















∂
ψ∂

ρ∂
∂+








∂
ψ∂

ρ∂
∂−=×∇= ϕ

2E1
s

1
sn

1
n

evω         (41) 

 
where 
 

 















∂
∂

ρ∂
∂+








∂
∂

ρ∂
∂ρ=

s
1

sn
1

n
E 2 .           (42) 

 
Note that in terms of ρ  and z , 2E  is given by (27) as 
 

 2

2

2

2
2

z
1E

∂
∂+

ρ∂
∂

ρ
−

ρ∂
∂= .            (43) 
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Plane Stagnation Flows 
 
 Consider a steady plane stagnation flow shown in Figure 1.  For steady plane flow 
the Navier-Stokes equation reduces to  
 

 ( ) ψ∇ν=
∂

ψψ∇∂ 4
2

)y,x(
,                (1) 

 
or 
 

 ψ∇ν=ψ∇
∂
∂

∂
ψ∂−ψ∇

∂
∂

∂
ψ∂ 422

yxxy
             (2) 

 

 
 

Figure 1.  Schematics of plane stagnation flow. 
 
 

Potential stagnation plane flow is described by 
 
 axU = , ayV −= , axy=ψ .              (3) 
 
We look for a solution of the form 
 
 ( )yxf=ψ .                (4) 
 
Then  
 

fxu ′= ,  fv = ,   fx2 ′′=ψ∇             (5) 
 
Using (4) and (5), equation (2) becomes 

y 

x 
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 ( )xfxffffx 4ν=′′′−′′′                (6) 
 
or 
 
 ( )4fffff ν=′′′−′′′ .               (7) 
 
Integrating (7) we find 
 
 cffff 2 +′′′ν=′′−′                (8) 
 

The boundary conditions are: 
 
 At 0y = ,  0u = , 0v =                (9) 
 

At large y,  Equations in (3) holds .                       (10) 
 

That is 
 

( ) ( ) 00f0f =′= ,                           (11) 
 
As ∞→y  ayf →                  (12) 

 
Using (12) we find 
 
 2ac =                (13) 
 
Thus 
 
 22 affff +′′′ν=′′−′              (14) 
 

Introducing a change of variable (Schlichting,1960) 
 

 ya
ν

=η , ( )ηϕν= af ,            (15) 

 
Equation (14) may be restated as 
 
 012 =+ϕ′−ϕ ′′ϕ+ϕ ′′′             (16) 
 
subject to boundary conditions 
 
 ( ) ( ) 000 =φ′=φ ,              (17) 
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as ∞→η   1=ϕ′                  (18) 

 
Graphical representation of the numerical solution is shown in Figure 2.  Additional 
details of the solution are discussed by Schlichting (1960).  Accordingly, 
 

At 4.2=η ,  99.0=ϕ′ ,  ( )ηφ′=
U
u           (19) 

 
Hence, the boundary layer thickness is given by 
 

 
a

4.2 ν=δ               (20) 

1.6 

1.2 

0.8 

0.4 

0.8 
0 

1.6 2.4 3.2 

ya
ν

=η

Φ" 

Φ'=u/U 

Φ 

Figure 2.  Schematics of plane stagnation flow solutions. 
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Axisymmetric Stagnation Flow 
 
 Potential axisymmetric stagnation flow is described as 
 
 arVr = , az2Vz −= , zar 2−=ψ .           (21) 
 
The steady state Navier-Stokes equation for axisymmetric flows is given as 
 

 ( ) ( ) ψν=ψ
∂
ψ∂+ψ

∂
∂

∂
ψ∂+ψ

∂
∂

∂
ψ∂− 42

2
22 EE

zr
2E

zrr
1E

rzr
1 ,        (22) 

 
where 
 

 
rr

1vz ∂
ψ∂= , 

zr
1vr ∂

ψ∂−= ,            (23) 

 

 2

2

2

2
2

zrr
1

r
E

∂
∂+

∂
∂−

∂
∂= .            (24) 

 
 
Similar to the plane flow case we look for a solution of the form 
 
 ( )zfr 2−=ψ ,              (25) 
 
with 
 
 f2vz −= , frvr ′= , frE 22 ′′−=ψ .           (26) 
 
Using (25) and (26), Equation (22) reduces to 
 
 ( ) ( ) ( ) ( )4222 frfrf2frf2fr2fr ν−=′′−′−′′′−−′′−′          (27) 
 
or 
 
 0""fff2 =ν+′′′              (28) 
 

The boundary conditions are 
 
 0vv zr ==  at 0z = ; zar 2−=ψ  as ∞→z           (29) 
 
or 
 
 ( ) ( ) 00f0f =′= , ( ) af =∞′  or zar 2−=ψ  as ∞→z          (30) 
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Integrating (28) we find 
 
 1

2 cfff2f +′′′ν=′′−′              (31) 
 
For equation (31) to be valid at large z, 2

1 ac =  
 

Introducing a change of variables 
 

 za
ν

=ξ , ( )ξφν= af             (32) 

 
Equation (31) becomes 
 
 012 2 =+φ′−φ′′φ+φ ′′′                        (33) 
 
subject to 
 
 ( ) ( ) 000 =φ′=φ , ( ) 1=∞φ′             (34) 
 
The numerical solutions of the flow filed are very similar to the plane stagnation flow 
case shown in Figure 2 with a slightly fuller velocity profile.  The details of the numerical 
solution are discussed by Schlichting (1960). 
 
 


