Clarkson

University
Incompressible Viscous Flows

For an incompressible fluid, the continuity equation and the Navier-Stokes
equation are given as

0% =0, (1)
a—V+VDDV:—lDP+VD2V. (2)
ot P

Using a vector identity, Equation (2) may be restated as

2
v
a—V+Du—vx(va):—vDXD><DXV 3)
ot 2
Define vorticity
o=xv 4)

and taking curl of (3) we find

%_?—Dx(vxm):—vaDXm. (5)

Noting that curl of gradient is zero and
Ox(vxe)=(0M)v-(05)o +o Dy -v Do (6)
Equation (5) may be restated as

%—?‘*‘VDDOJ:O)DDV‘FVDZ(D (7)

Equation (7) is the vorticity transport equation. It shows that in addition to being
convected and diffused, vorticity is also generated by the first on the right hand side of
Equation (7) by a vortex stretching mechanism.

Two-Dimensional Plane Flows

For two dimensional flows in xy-plane as shown in Figure 1, let
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Figure 1. Schematics of plane flows in a Cartesian coordinate system.

That is

op __oy

u=—,v=——,

dy 0x
and Equation (1) is satisfied.

The nonzero element of ® is

ov du
w, =w=—-—=-0Y.
z ox Oy v

Equation (7) in two-dimensional case reduces to

ow O0w 0w _ 4
—+u—+v—=vl'Ww.
ot 0x dy

Using (10), Equation (11) may be restated as

0 oy 0 oy 0
—PP+——D0P-——0%¢ =vO*y.
ot v dy 0x v 0x Oy v v

or

®)

)

(10)

(1)

(12)
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0 o oDwy)
6tD g+ a(x’y) =vl"y. (13)

Equation (13) is the equivalent to the Navier-Stokes equation and contains a single
unknown .

Plane Flows in a Cylindrical Geometry

Case (a) v, =0 and v, and v, are functions of r and 0.

yt V

Figure 2. Schematics of plane flows in a polar coordinate system.

For a plane flow in cylindrical geometry as shown in Figure 2, let

v=0x(e,u(r.0)). (14)
That 1s,
v :la—wer —a—mee, (15)
r 00 or
or
S (16)

rTree T ar
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The nonzero element of ® is given by

w, =w=-0Y (17)
where
10( 09y, 10°W
L'J_rar( Orj PEFT:E (18)

Equation (7) now becomes

9@,y 0y 109y, (19)
ot or r 00

Using (17), Equation (19) may be restated as

8 b 100D L awlo L

o Y e Y arroe PEVHY: (20)
or

EDZQJ M D4llJ (21)

ot r 9(r,0)

Equation (21) is the equation governing Lp(r,e) in plane flows expressed in polar
coordinated system.

Case (b) v =0, v, and v, are functions of r and z.

Z

C \£

Figure 3. Schematics of axisymmetric flows in a cylindrical coordinate system.



For an axisymmetric flow in cylindrical coordinates, let

v= Dx(eeg(r,z)j

r

That is
= la_l.IJ +la_lpe ,
rdz " ror
or
Lol oy
r or r 0z

The vorticity define by Equation (4) now becomes

©=DOxv= 6V _0v, - e, 6 v, (IBLIJJ
0z or 0z° Gr r Or

Thus, the only nonzero component of vorticity is given by

1
w, =w=—--Ey,
T

where

o’y 10y 0%y

E’Y = .
v or> ror 0z’

Equation (7) may now be restated as

awe + v, awe + v, awe : (be =-vUx[x (wﬁ )|6—comp
ot or 0z r '

Using (26) in (28) we find

Q(EZw)_la_qu(Equ)+la_wi

2 oy
E? —YE? E*
ot r 0z Or r Or 62( LIJ) r? 9z W=vEY

or
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(22)

(23)

24)

(25)

(26)

27)

(28)

(29)



0 () 1o(EWY), 209 ,
E(E llJ) r 0(r,z) +r2 aquJ_VEqJ G0

Equation (30) governs L|J(r,z) in axisymmetric cylindrical flows.

Spherical Coordinates

Spherical coordinate system is shown in Figure 4. Here

X =rcosBcosd
y =rcosBsin@ 31)

z=rsin0

X

Figure 4. Schematics of spherical coordinate system.

Consider the case when v, =0 and v, and v, are only functions of r and 6.

Let

v=0 X(M} (32)

rsin©

That is

ME637 6 G. Ahmadi
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Yoo sline(;_'ger B rsilne(;_'fe9 33)
or
w1 ey -

V, S 5———, Vg = - .
r°sin® 006 rsin© or

The vorticity equation will reduce to

2 2
i(EzljJ +— 1 a(E LIJ’LIJ)+ 22E L2|J (a—wcosﬁ—la—wsine =VvE'y, (35)
ot r’sin® 9(r,8) r’sin’6\ ar r 00

where

02 L1 02 _cot® 9

E* = — .
o’ r?200* r* 90

(36)

Intrinsic Coordinates
It is sometimes simpler to work with a coordinate system, which is attached to the

surface of revolution. For the body of revolution shown Figure 5, consider the unit
vectors n, s, e, . For this system the metrics are

h,=h, =p, h,=h =1 (37)

Thus

odv 00 1 0P

OP=n—+s—+e, —— (38)
on 0s p 0d
The stream function for axisymmetric flows may now be introduced as
v=0x|e, —LIJ(S’H) =—la—wn +la_qu (39)
p p 0Os p On
That is
L= _la_l.IJ’ s :la_l.IJ (40)
p 0Os p On
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Figure 5. Schematics of intrinsic coordinate systems.

The vorticity is now given as

- — e | O(1OW) 010y} 1.,
o=Uxv= e{an(p 6n]+as(p dsﬂ pELIJ 1)
where
010 o0(10
2z | S|+ =], 42
) p{antpan}r@s(pdsﬂ “

Note that in terms of p and z, E* is given by (27) as

2 2
E2 = 0 5 —li+a_2.
op° pop 0z

(43)



Clarkson

University
Plane Stagnation Flows

Consider a steady plane stagnation flow shown in Figure 1. For steady plane flow
the Navier-Stokes equation reduces to

o[y ) _
————L=v[] 1
0(x,y) v o
or
WO oy WO s
6y6XDLp 6){(9yDLp vy @)
4y

X
Figure 1. Schematics of plane stagnation flow.

Potential stagnation plane flow is described by

U=ax, V=-ay, P =axy. 3)
We look for a solution of the form

W =xf(y). @)
Then

u=xf", v=rf, 0% = xf" ®)

Using (4) and (5), equation (2) becomes



xf'f" = ff"x = vfWx

or
£ - ff" = vf ),
Integrating (7) we find
2 —ff" =vf" +¢
The boundary conditions are:
Aty=0, u=0,v=0
Atlargey,  Equations in (3) holds.
That is
f(0)=£'(0)=0,
Asy - o f - ay
Using (12) we find
c=a’
Thus

f!2 _ff” = me +a2

Introducing a change of variable (Schlichting,1960)

a
n :\Ey, f =+av(n),
Equation (14) may be restated as
¢m +¢¢n _¢12 +1 - O
subject to boundary conditions

¢0)=¢(0)=0,

10
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(6)

()

(8)

)
(10)

(11)
(12)

(13)

(14)

(15)

(16)

(17)



asn - o o' =1 (18)

Graphical representation of the numerical solution is shown in Figure 2. Additional
details of the solution are discussed by Schlichting (1960). Accordingly,

Atn=24, ¢'=099, %:(p'(r]) (19)

Hence, the boundary layer thickness is given by

5= 2.4\/2 (20)
1.6 /
1.2 '\\q)" /

il X
V_ TN —

0
0.8 1.6 2.4 3.2
a
N=4-Y
v

Figure 2. Schematics of plane stagnation flow solutions.
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Axisymmetric Stagnation Flow

Potential axisymmetric stagnation flow is described as

V. =ar, V, =-2az, | = —ar’z. (21)
The steady state Navier-Stokes equation for axisymmetric flows is given as

—%%%(EW%%%—T%(EW%%%EZQJ =VE*y, (22)
where

2 2

E2=:7—%§+:?. (24)
Similar to the plane flow case we look for a solution of the form

W = -r’f(z), (25)
with

v, ==2f, v, =tf", E°¢=-r’f". (26)
Using (25) and (26), Equation (22) reduces to

of' (= 2ef") - 26 (- r267) - 26 (- 1267) = 26 @) 27)
or

2ff" +vf""=0 (28)

The boundary conditions are

v.=v, =0atz=0; y=-ar’zas z - » (29)
or

£(0)=1£'(0)=0, f'(0)=a or Y =-ar’z as z - o (30)
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Integrating (28) we find
f'? = 2ff" =vf" +¢, (31)

For equation (31) to be valid at large z, ¢, =a’

Introducing a change of variables
£ = %z, f = Vavg(t) (32)

Equation (31) becomes

¢I!I+2(w!l_¢12 +1:0 (33)
subject to
¢0)=¢(0)=0, ¢(x)=1 (34)

The numerical solutions of the flow filed are very similar to the plane stagnation flow
case shown in Figure 2 with a slightly fuller velocity profile. The details of the numerical
solution are discussed by Schlichting (1960).
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