
 

Exact Solutions to the Navier-Stokes Equation 
 
Unsteady Parallel Flows (Plate Suddenly Set in Motion)  
 
 Consider that special case of a viscous fluid near a wall that is set suddenly in 
motion as shown in Figure 1.  The unsteady Navier-Stokes reduces to  
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Figure 1.  Schematics of flow near a wall suddenly set in motion. 
 

The boundary conditions are: 
 
At           (2) 0y = 0Uu =

 
 

 at =y ,        ∞ 0u =        (3) 
 
 
The corresponding initial condition for the fluid that starts from rest is given as 
 

 at 0t =   0u = .       (4) 
 
        
Similarity Solution (Group Theory) 
 

Let 
    ,        (5) 1t~t , at~y

 
Equation  (1) implies that  
 

 ,   a21 = →
2
1a = ,        (6) 
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Thus, 
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Now introducing the similarity variables 
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 Substituting (9) and (10) in Equation (1), we find 
 
 

t4
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t2
f

ν
′′ν=

η′− ,         (11) 

 
 
or 
 

0f2f =′η+′′          (12) 
 
Boundary and initial conditions (2)-(4) in terms of the similarity variables become 

 
1)0(f = ,  .       (13) 0)(f =∞

 
 
 From Equation (12), it follows that 
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′
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or 
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where the first boundary condition in (13) is used.  The second boundary condition 
implies that 
 

( ) ∫
∞ η− η+==∞

0 1dec10f
2
1  or  
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−
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de
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Equation (15) then becomes 
 

( )η−=η
π

−= ∫
η η− erf1de21f

0 1

2
1       (17) 

 
or 

   η= erfcf , 







ν

=
t2

yerfcUu 0      (18) 

 
 Time variations of the velocity profile as predicted by Equation (18) are shown in 
Figure 2. 
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An alternative is to use the transform method.  Taking Laplace transform of 

Equation (1), it follows that 
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∂
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or 
 

0usu =
ν

−
″

        (20) 

 
The solution to (20) is  
 

ysys

BeAeu νν
−

+=         (21) 
 

 Boundary conditions (2) and (3) imply that 
 

s
U

A 0= ,         (22) 0B =

 
Thus, the solution in the transform domain is given by 
 

ys
0 e

s
U

u ν
−

=          (23) 

 
Inverse Laplace transform of (23) gives 
 









ν

=
t2

yerfcUu 0 .        (24) 

 
 
 
Oscillating Plate 
 

Consider that case of a viscous fluid near an oscillating wall as shown in Figure 3.  
The unsteady Navier-Stokes reduces to  
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Figure 2.  Schematics of flow near an oscillating wall. 
 

The boundary conditions are: 
 

 t    at cosUu 0 ω= 0y =      (26) 
 

     at 0=u ∞=y      (27) 
 
 
Let 
 

( aytcoseUu ky
0 −ω= − ) .       (28) 

 
Then 

( aytsineU )
t
u ky

0 −ωω−=
∂
∂ −        (29) 

 
 

( ) (( aytsinaaytcoskeU
y
u ky

0 −ω+−ω−=
∂
∂ − ))     (30) 

 
 

( θ−θ−θ=
∂
∂ − cosasinka2coskeU
y
u 22ky

02

2

), ayt −ω=θ    (31) 

 
 
 Substituting (29)-(31) into Equation (25) it follows that 
 
 

( )( )θ−θ−ν=θω− sinak2cosaksin 22      (32) 
 
or 
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22 ka =         (33) 
 

ν=ν=ω 2k2ak2        (34) 
 

a
2

k =
ν
ω

=         (35) 

 
Thus, the velocity profile is given as 
 

( )kytcoseUu ky
0 −ω= − ,  

ν
ω

=
2

k .     (36) 

 
 
 
Unsteady Flow in a Tube 
 

Consider flow in a circular tube subject to a step change in pressure as shown in 
Figure 4.   The Navier-Stokes equation reduces to 
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Introducing dimensionless variables, 
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4
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we find 
 

 







ξ∂
ϕ∂

ξ
ξ∂
∂

ξ
+=

τ∂
ϕ∂ 14 .       (39) 

 
 
 
 
 
 
 
 
 
 

R 

z

 
Figure 4.  Schematics of flow in a tube subject to step change in pressure. 
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 The boundary condition is  
 

 0  at ,         (40) =ϕ 1=ξ
 
 
with the initial conditions 
 

 0  at .        (41) =ϕ 0=τ
 
 

Let 
 

 ,         (42) ψ−ξ−=φ 21
 
Equation (39) reduces to  
 

 







ξ∂
ψ∂

ξ
ξ∂
∂

ξ
=

τ∂
ψ∂ 1         (43) 

 
The boundary and initial conditions (40) and (41) now become 
 

 At 1=ξ ,  .        (44) 0=ψ
 

 At 0=τ ,  .       (45) 21 ξ−=ψ
 
 
 

To find the solution the method of separation of variable is used.  That is let 
 

          (46) ( ) ( )τξ=ψ TF
 
Equation (43) then becomes 
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d
dF

d
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ξ
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From Equation (47), it follows that 
 

 0 ,         (48) TT 2 =α+&
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The solutions to Equations (48) and (49) are given as 

 
          (50) τα−=

2

CeT
 

 ,       (51) ( ) (αξ+αξ= 00 BYAJF )

) )
 
where  and  are Bessel function of first and second kind of zeroth order. (αξ0J (αξ0Y
The boundary conditions are  
 

     since   ( ) 0Bfinite~0F =⇒ ( ) ∞→0Y0 .     (52) 
and 
 

 .        (53) ( ) ( ) 0J01F 0 =α⇒=
 
Equation (53) is a characteristic equation.  The corresponding eigenvalues, nα , are given 
as 
 

 405.21 =α , , ,…      (54) 52.52 =α 654.83 =α
 
The general solution for Equation (43) then is given by 
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Using the initial condition 
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Hence, 
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 Variation of the velocity profile in the pipe is shown schematically in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.  Variations of velocity field in a tube subject to a step change in pressure. 

 
 
 
Noncircular Pipe Flows 
 

Consider steady state viscous flows in a pipe with arbitrary cross section under a 
constant pressure gradient as shown in Figure 6.  The Navier-Stokes equation is given as 

 
 

 const
dz
dP1W2 =

µ
=∇ .       (60) 

 
The corresponding boundary condition is 
 

    on  S.        (61) 0W =
 
 
 

τ
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Figure 6.  An arbitrary cross-section pipe subject to a constant pressure gradient. 
 
 
 
Elliptical Pipes 
 

Consider an elliptical cross-section pipe shown in Figure 7 with its boundary 
given as 
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We assume that the velocity field is given by 
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Figure 7.  Elliptical cross-section pipe subject to a constant pressure gradient. 
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Hence 
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The flow rate is given as 
 

 .        (66) ∫∫= wdxdyQ

 
After integration, it follows that 
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Triangular Pipes 
 

Consider a pipe as shown in Figure 8 whose cross section is an equilateral 
triangle.  The equation of the section is given as 
 

 ( ) ( )( )( ) 0a2y3xa2y3xaxy,xf =+++−−= .    (68) 
 

 
Assuming 
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Then  
 

( )
dz
dP1aA12y,xfAw 22

µ
==∇=∇ .      (70) 

 
 
 
 
 

ME637  G. Ahmadi 11



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

0a2y3x =++

x 

 
Figure 8.  A triangular pipe subject to a constant pressure grad

 
 

 
Thus, 
 

 
dx
dP

a12
1A
µ

=        

 
Hence, 
 

 ( )( )( )a2y3xa2y3xax
dx
dP

a12
1w +++−−
µ

=    
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