ME 637 PARTICLE TRANSPORT, DEPOSITION, AND REMOVAL-II Spring 2023

INSTRUCTOR: Goodarz Ahmadi, Room 267 CAMP and SC 304(325-268-2322)

gahmadi@clarkson.edu

Office Hours: Tuesday and Thursday 12:30 - 3:30 pm

(Zoom meeting as needed https://clarkson.zoom.us/j/761986404)

TEXT: None. Lectures notes are available on the web.

http://webspace.clarkson.edu/projects/crcd/

https://sites.clarkson.edu/gahmadi/courses/me637/

TA: Tony Abrantes, <u>abrantaj@clarkson.edu</u>

Course Description

Review of viscous flow theory. Creeping flows around a sphere. Introduction to turbulent flows and turbulent modeling. Algebraic, one, and several equation models. Drag, lift, virtual mass, and Basset forces acting on particles. Wall effects and nonspherical particles. Aerosol transport and dispersion in turbulent flows. Turbulent diffusion and wall deposition of aerosols. Particle charging mechanisms and electrostatics forces. Thermophoretic and electrophoretic effects. Introduction to colloids and electrokinetic phenomena. Computational aspects of aerosol dispersion and deposition in turbulent flows. Sublayer model approach. **Approximate** simulation of turbulence and turbulence transport. DNS simulation methods. Nonspherical particle transport in turbulent flows. Coagulation of aerosols due to shear and turbulence. Experimental techniques for turbulent flow measurements. Hot-wire anemometry, Isokinetic sampling. Particle concentration and velocity measurements with Phase-Doppler, and PIV. Applications to micro-contamination control, air pollution, combustor, spray, particle deposition in human lungs, respiratory viruses spread, clean room equipment, xerography, and surface cleaning in microelectronic and imaging industries.

Delivery Method

The course is offered in blended mode, both in-person in the class as well as online (asynchronous). The lectures will be captured by Echo 360 and will be available to students on Moodle.

COURSE WEB SITE:

https://webspace.clarkson.edu/projects/crcd/public_html/me637/index.php https://sites.clarkson.edu/gahmadi/courses/me637/

Course Objectives

- 1. To provide a fundamental understanding of aerosol/particle transport and removal in turbulent flows.
- 2. To provide a fundamental understanding of the computational modeling of dilute two-phase flows.
- 3. To provide a fundamental understanding of the industrial applications of dilute multiphase gassolid turbulent flows.
- 4. To familiarize the students with the modern experimental techniques in aerosol transport and deposition.
- 5. To provide a fundamental understanding of the industrial, environmental, and biomedical applications of aerosol transport processes.

Course Learning Outcomes

Objective 1:

• Students will be able to formulate and solve aerosol transport and deposition in turbulent flows.

Objective 2:

• Students will be able to formulate and analyze charged particle transport and deposition.

Objective 3:

- Students will be able to perform computational fluid dynamics and particle trajectory analysis in turbulent flows.
- Students will demonstrate using the ANSYS-Fluent Code for solving particle transport in turbulent flows.
- The student will be able to perform an experimental study of aerosol transport and deposition processes.

Objective 4:

- Students will be able to analyze the industrial gas cleaning and separation processes.
- Students will demonstrate the application of aerosol transport and dispersion in industrial, environmental, or biomedical applications in pollution transport and respiratory deposition

COURSE OUTLINE

Course Schedule & Graded Activities

Dates	Module Title	Learning Materials (readings, videos, etc.)	Activities
Week 1-2	I. REVIEW OF VISCOUS FLOWS	Navier-Stokes EquationSimple FlowsCreeping FlowsDrag on Spherical Particles	Homework
Weeks 2-3	II. REVIEW OF COMPUTATIONAL FLUID MECHANICS	Finite Difference and Finite VolumeMethodsIntroduction to ANSYS-Fluent Code	Homework
Weeks 4-8	III. REVIEW OF TURBULENCE MODELING	 Algebraic Models Two-Equation Models Stress Transport Model Rate-Dependent Models PDF Models 	Homework
Weeks 9-10	IV. AEROSOLS	 Review of Drag, Lift, Virtual Mass and Basset Forces, BBO Equation Review of Nonspherical Particles Review of Brownian Motions Review of Particle Deposition Mechanisms Aerosol Transport in Turbulent Flows Wall Deposition in Turbulent Flows 	Computer Projects

		- Inertia Impaction	
		- Particle Charging Mechanisms	
		- Electrostatic Forces	
		- Thermophoretic Forces	
		- Aerosol Coagulation	
		- Coagulation by Turbulence and Shear	
		Fields	
Exam 1	March 10 (Friday)	Exam 1, CAMP 175	Exam 1
224411	4:00-5:30	(Friday) 4:00-5:30	
Weeks 11	V. COLLOIDS	- Introduction to Colloids	Computer
		- Double Layer Forces	Projects
		- Electrokinetic Phenomena	J
Weeks 12-	VI. SIMULATION	- Sublayer Model of Turbulence	Homework
15	METHODS	- Particle Deposition on Smooth and	Homework
13	WILLIAMS	Rough Wall	
		- Sublayer Simulation of Charged	
		Particle	
		- Approximate Simulation of	
		Instantaneous Turbulent Flows	
		- DNS and Large Eddy Simulation of	
		Turbulence	
		- Particle Transport and Deposition in	
		Turbulent Flows	
		- Brownian Motion of Nano-particles in	
		Turbulent Flows	
		- Nonspherical Particle Transport in	
		Turbulent Flows	
Weeks 15	VII. EXPERIMENTAL	- Turbulent Flow Measurement (Hot-	Homework
	TECHNIQUES	Wire, PIV, Laser-Doppler)	
		- Particle Concentration and Velocity	
		Measurements (Phase-Doppler, PIV)	
		- Particle Production	
		- Aerosol Sampling Techniques and	
		Aerosol Instrumentation	
		- Advanced Surface Cleaning	
		Techniques (laser, cryogenic,	
		ultrasonic)	
Weeks 16	VIII. APPLICATIONS	- Micro-contamination Control and	
		Clean Room Operation	
		- Xerography	
		- Indoor Air Quality	
		- Transmission of respiratory viruses	
		- Computational Methods for Indoor Air	
		- Lung Deposition and Inhalation Drug	
		Delivery	
		- Filtration Processes and Gas Cleaning	
		- Combustors and Boilers	
		– Spray formation	
Final Exam		Final Exam week	Final Exam
Final Daaili		I mai Dami week	I mai L'ami

COURSE TOPICS

I. REVIEW OF VISCOUS FLOWS

- Navier-Stokes Equation
- Simple Flows
- Creeping Flows
- Drag on Spherical Particles

II. REVIEW OF COMPUTATIONAL FLUID MECHANICS

- Finite Difference and Finite Volume Methods
- Introduction to ANSYS-Fluent Code

III. REVIEW OF TURBULENCE MODELING

- Algebraic Models
- Two-Equation Models
- Stress Transport Model
- Rate-Dependent Models
- PDF Models

IV. AEROSOLS

- Review of Drag, Lift, Virtual Mass and Basset Forces, BBO Equation
- Review of Nonspherical Particles
- Review of Brownian Motions
- Review of Particle Deposition Mechanisms
- Aerosol Transport in Turbulent Flows
- Wall Deposition in Turbulent Flows
- Inertia Impaction
- Particle Charging Mechanisms
- Electrostatic Forces
- Thermophoretic Forces
- Aerosol Coagulation
- Coagulation by Turbulence and Shear Fields

V. COLLOIDS

- Introduction to Colloids
- Double Layer Forces
- Electrokinetic Phenomena

VI. SIMULATION METHODS

- Sublayer Model of Turbulence
- Particle Deposition on Smooth and Rough Wall
- Sublayer Simulation of Charged Particle
- Approximate Simulation of Instantaneous Turbulent Flows
- DNS and Large Eddy Simulation of Turbulence
- Particle Transport and Deposition in Turbulent Flows
- Brownian Motion of Nano-particles in Turbulent Flows
- Nonspherical Particle Transport in Turbulent Flows

VII. EXPERIMENTAL TECHNIQUES

- Turbulent Flow Measurement (Hot-Wire, PIV, Laser-Doppler)
- Particle Concentration and Velocity Measurements (Phase-Doppler, PIV)
- Particle Production

- Aerosol Sampling Techniques and Aerosol Instrumentation
- Advanced Surface Cleaning Techniques (laser, cryogenic, ultrasonic)

VIII. APPLICATIONS

- Microcontamination Control and Clean Room Operation
- Xerography
- Indoor Air Quality
- Transmission of respiratory viruses
- Computational Methods for Indoor Air
- Lung Deposition and Inhalation Drug Delivery
- Filtration Processes and Gas Cleaning
- Combustors and Boilers
- Spray formation

EVALUATION METHOD

Exam 1 (March 10, CAMP 175, (4:00-5:30) 25% Final Exam (Final Exam week) 35% Computational Projects and Lab 30% Homework 10%

Grading

Grade Ranges

Graduate Letter Grades

Course Average	Grade	Quality Points
97+	A+	4.0
93-96	A	4.0
90-92	A-	3.667
87-89	B+	3.334
84-86	В	3.0
80-83	B-	2.667
76-79	C+	2.334
70-75	С	2.0
<70	F	0

Course Policies

Etiquette Expectations & Learner Interaction

Educational institutions promote the advancement of knowledge through positive and constructive debate--both inside and outside the classroom. Please visit and follow: Netiquette and Electronic Learner Interaction Guidelines.

Institutional Policies

Institutional Policies & Regulations

Academic Integrity

Students are expected to abide by the standards of academic honesty, as described in the <u>Clarkson Regulations</u>. The work or words of others must be properly cited. Please refer to Clarkson Library's <u>Guide to Plagiarism</u> and <u>Citing Sources</u>.

Students with Disabilities Policy

Clarkson University welcomes inquiries and applications from individuals who have disabilities. Information relating to disabling conditions is not a determining factor in admission decisions. The University strives to make all facilities and programs accessible to students with disabilities by providing appropriate academic adjustments and other appropriate modifications (accommodations), as necessary. Timely notification of any need for accommodations due to a disability is encouraged so that the Office of Accommodative Services (OAS) may provide for students in an efficient manner.

For more information or other appropriate campus referrals, contact:

Director of Accommodative Services Clarkson University P.O. Box 5645 Potsdam, NY 13699-5635

Phone: 315-268-7643 **Fax**: 315-268-2400 **Email**: oas@clarkson.edu

Office of Accessibility Services Website

Instructor Participation

During this course, as your instructor, you can expect me to

- Respond to emails and voicemails within 1 day
- Grade activities and assessments within 3 days
- Be an active participant on the discussion board

REFERENCES

- J. Y. Tu, K. Inthavong, and G. Ahmadi, "Computational Fluid and Particle Dynamics in the Human Respiratory System," Springer, New York (2013). ISBN 978-94-007-4487-5, ISBN 978-94-007-4488-2 (E-Book).
 - http://www.springerlink.com/content/978-94-007-4488-2?MUD=MPhttp://www.springer.com/materials/mechanics/book/978-94-007-4487-5
- W.C. Hinds, Aerosol Science and Technology, Wiley, New York (1983, 1999).
- J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Martinus Nijhoff (1983).
- N.A. Fuchs, The Mechanics of Aerosols, Dover (1989).
- V.G. Levich, Physicochemicals Hydrodynamics, Prentice-Hall, New York (1962).
- P.A. Baron and K.W. Willeke, Aerosol Measurement, Principles, Techniques, and Application, Wiley, Interscience, New York (2001).
- F. White, Viscous Flow, McGraw Hill, New York (1974).
- R.L. Panton, Incompressible Flow, John Wiley, New York (1984).

- H. Schlichting, Boundary Layer Theory, McGraw Hill, New York (1979).
- J.O. Hinze, Turbulence, McGraw Hill, New York (1975).
- H. Tennekes and J.L. Lumley, A First Course in Turbulence, MIT Press, Cambridge (1981).
- G.M. Hidy, Aerosols, Academic Press, New York (1984).
- G.M. Hidy and J.R. Brook, The Dynamics of Aerocolloididal Systems Pergamon Press, London (1970).
- Papavergos and Hedley, Chem. Eng. Rs. Des., Vol. 62, September 1984, pp. 275-295.
- S.K. Friedlander, Smoke, Dust and Haze, Fundamentals of Aerosol Dynamics, 2nd Ed. Oxford University Press, Oxford (2000).
- J. H. Vincent, Aerosol Science for Industrial Hygienists, Pergamon Press, Oxford (1995).
- D.J.Quesnel, D.S. Rimai and L.H.Sharpe, Particle Adhesion: Application and Advances, Taylor and Francis, New York (2001).
- G. Ahmadi, Overview of Digital Simulation Procedures for Aerosols Transport in Turbulent Flows, in "Particles in Gases and Liquids 3: Detection, Characterization, and Control," Ed. by K.L. Mittal, Plenum Press, New York, pp. 1-21 (1993).
- G. Ahmadi, Overview of Computational and Analytical Modeling of Particle Transport and Deposition in Turbulent Flows, Scientia Iranica Vol. 1, 1-23 (1994).
- H. Zhang and G. Ahmadi, Aerosol Particle Transport and Deposition in Vertical and Horizontal Turbulent Duct Flows, J. Fluid Mechanics, Vol. 406, pp. 55-80 (2000).
- M. Soltani, H. Ounis, G. Ahmadi, and J.B. McLaughlin, Direct Numerical Simulation of Charged Particle Deposition in a Turbulent Flow, Int. J. Multiphase Flow, Vol. 24, pp. 77-94, (1988).
- M.R. Spina and W.W. Nazaroff, Particle deposition from turbulent flow: Review of published research and its applicability to ventilation ducts in commercial buildings, http://repositories.cdlib.org/lbnl/LBNL-51432/