1. Express the following equations in vector (Gibbs) notation:

$$
\mathrm{a}_{\mathrm{i}}=5 \mathrm{~b}_{\mathrm{i}}, \quad \mathrm{a}=\mathrm{b}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}, \quad \mathrm{a}_{\mathrm{i}}=\varepsilon_{\mathrm{ijk}} \mathrm{~b}_{\mathrm{j}} \mathrm{c}_{\mathrm{k}} .
$$

2. Suppose v_{i} is the velocity at a point in a fluid. Show that $T_{i j}=v_{i} v_{j}$ is a tensor.
3. Acceleration is given as

$$
\mathbf{a}=\frac{\mathrm{D} \mathbf{v}}{\mathrm{Dt}}=\frac{\partial \mathbf{v}}{\partial \mathrm{t}}+\mathbf{v} \cdot \nabla \mathbf{v} .
$$

Express the acceleration in indicial notation.
4. Vorticity is given as

$$
\boldsymbol{\omega}=\nabla \times \mathbf{v} .
$$

Compute ω for a rotating fluid with

$$
\mathbf{v}=\boldsymbol{\Omega} \times \mathbf{r},
$$

where $\boldsymbol{\Omega}$ is a constant angular velocity.
5. Using indicial notation show that

$$
\nabla \times \nabla \times \mathbf{u}=\nabla \nabla \cdot \mathbf{u}-\nabla^{2} \mathbf{u} .
$$

6. Show that

$$
\varepsilon_{i j k} \varepsilon_{\mathrm{njk}} u_{\mathrm{n}}=2 \mathrm{u}_{\mathrm{i}} .
$$

