1. Show that the Oseen vortex flow

$$
\mathrm{v}_{\theta}=\frac{\Gamma}{2 \pi \mathrm{r}}\left(1-\mathrm{e}^{-\mathrm{r}^{2} / 4 \mathrm{vt}}\right)
$$

is an exact solution to the Navier-Stokes Equation.
2. Obtain the velocity profiles $\mathrm{v}_{\mathrm{z}}(\mathrm{r})$ and $\mathrm{v}_{\theta}(\mathrm{r})$ for the helical flow in a annular region. The inner and outer pipes rotate, respectively, with angular velocities of ω_{1} and ω_{2}, and a constant pressure gradient is imposed on the pipe.

3. Find the fully developed velocity profiles for a duct with rectangular cross section. Assume study flow with a constant pressure gradient.

4. Determine the unsteady velocity profile, which is developed if the lower plate is set suddenly in motion. The fluid is initially at rest.

