Particle Equation of Motion (BBO-Equation)

The general equation of motion of a small spherical particle suspended in fluid is given as

$$
\begin{align*}
m_{p} \frac{d v_{i}}{d t}= & m_{f} \frac{D u_{i}}{D t}-\frac{1}{2} m_{f} \frac{d}{d t}\left(v_{i}-u_{i}-\frac{1}{10} a^{2} \nabla^{2} u_{i}\right) \\
& -6 \pi \mu a\left[\left(v_{i}-u_{i}\right)-\frac{1}{6} a^{2} \nabla^{2} u_{i}\right]+\left(m_{p}-m_{f}\right) g_{i}(t) \tag{1}\\
& -6 \pi \mu a^{2} \int_{0}^{t} \frac{\frac{d}{d \tau}\left[v_{i}(\tau)-u_{i}(\tau)\right] d \tau}{\sqrt{v(t-\tau)}}+L_{i}+F_{i}
\end{align*}
$$

where $\mathrm{m}_{\mathrm{p}}=\left(\frac{4 \pi}{3}\right) \mathrm{a}^{3} \rho_{\mathrm{p}}, \quad \mathrm{m}_{\mathrm{F}}=\left(\frac{4 \pi}{3}\right) \mathrm{a}^{3} \rho_{f}$, a is the radius of the spherical particle, v_{i} is the particle velocity, $u_{i}[y(t), t]$ is the fluid velocity at the particle location, μ is the viscosity, v is the kinematic viscosity, ρ_{p} is the particle density, ρ_{f} is the fluid density, $\mathrm{g}_{\mathrm{i}}(\mathrm{t})$ is the acceleration of gravity and $\mathrm{y}(\mathrm{t})$ is the location of the particle. Saffman's (1965, 1968) lift force L_{i} and the acoustical force F_{i} are added to Equation (1) for completeness

