

Electrodynamics

Most natural and manmade aerosols carry charges, and their behavior is strongly affected by their charge. In this section the consequences of charges on dynamic of aerosols are discussed. A brief review of electrodynamics is first presented. The Maxell equations governing electrodynamics are listed in Table 1.

Tab	ole 1. Electrodynamics equ	1. Electrodynamics equations.		
Maxwell's Equations	Gaussian Units	MKS Units		
Coulomb's Law	$\nabla \cdot \mathbf{D} = 4\pi \rho_{e}$	$\nabla \cdot \mathbf{D} = \boldsymbol{\rho}_{e}$		
Ampere's Law	$\nabla \times \mathbf{H} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t}$	$\nabla \times \mathbf{H} = \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t}$		
Faraday's Law	$\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0$	$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$		
Absence of Free Magnetic Pol	les $\nabla \cdot \mathbf{B} = 0$	$\nabla \cdot \mathbf{B} = 0$		
Continuity Equation	$\nabla \mathbf{J} + \frac{\partial \boldsymbol{\rho}_{e}}{\partial t} = 0$			

Constitutive equations for free space are given as:

$$\mathbf{D} = \varepsilon_0 \mathbf{E} \qquad \varepsilon_0 = 1 \qquad \varepsilon_0 = \frac{10^7}{4\pi c^2} = 8.854 \times 10^{-12} \operatorname{Coul}/\operatorname{Volt} \cdot \mathbf{m} \qquad (1)$$

$$\mathbf{B} = \mu_0 \mathbf{H} \qquad \mu_0 = 1 \qquad \mu_0 = 4\pi \times 10^{-7}$$
(2)

Ohm's Law is given by

$$\mathbf{J} = \sigma \mathbf{E} \qquad \qquad \mathbf{c} = \left(\varepsilon_0 \mu_0\right)^{-1/2} \tag{3}$$

In these equations:

D = Electric Displacement	c = Speed of Light
\mathbf{B} = Magnetic Induction	ε = Dielectric Constant
$\mathbf{E} = \text{Electric Field}$	$\mu =$ Permeability
$\mathbf{H} = \mathbf{M}$ agnetic Field	σ = Conductivity
$\mathbf{J} = \mathrm{Current}$	ρ_e = Charge Density

Note that	at 1	electronic u	unit of ch	arge = 4.	8×10^{-10}	Statcoulombs	$s = 1.59 \times 10^{-19}$	Coulombs
(MKS).	А	conversion	table for	different	physical	quantities are	given in Table	e 1.

Physical Quantities	Symbol	MKS	Gaussian		
Length	l	1 meter (m)	10^2 centimeter (cm)		
Mass	m	1 kilogram (kg)	10^3 gram (gm)		
Time	t	1 second (s)	1 second (s)		
Force	F	1 newton (N)	10 ⁵ dynes		
Work, Energy	W, U	1 joule (J)	$10^7 \mathrm{ergs}$		
Power	Р	1 watt (W)	10^7 ergs/s		
Charge	q	1 coulomb (coul)	3×10^9 statcoulomb		
Charge Density	ρ	1 coul/m^3	3×10^3 statcoul/cm ³		
Current	Ι	1 ampere (coul/s)	3×10^9 statampere		
Current Density	J	1 amp/m^2	3×10^5 statamp/cm ²		
Electric Field	Е	1 volt/m	$\frac{1}{3} \times 10^{-4}$ statvolt/cm		
Electric Potential	V	1 volt	$\frac{1}{300}$ statvolt		
Polarization	Р	1 coul/m^2	3×10^5 dipole moment/cm ³		
Displacement	D	1 coul/m ²	$12\pi \times 10^5$ statcoul/cm ² (statvolt/cm)		
Conductivity	σ	1 mho/m	9×10^9 1/s		
Resistance	R	1 ohm	$\frac{1}{9} \times 10^{-11}$ s/cm		
Capacitance	С	1 farad	9×10^{11} cm		
Magnetic flux	F	1 weber	10^8 gauss cm ² (maxwell)		
Magnetic induction	В	1 weber/m ²	10^4 gauss		
Magnetic field	Н	1 amp-turn/m	$4\pi \times 10^3$ oersted		
Magnetic Induction	М	1 amp/m	$\frac{1}{4\pi} \times 10^{-3}$ magnetic moment/ cm ³		
Inductance	L	1 henry	$\frac{1}{9} \times 10^{-11}$		
For accurate works, all factors of 3 in the coefficients should be replaced by 2.99793.					

Table 1. Conversion table.

Aerosols Charging and Their Kinetics

Most aerosol particles carry some electrical charges. In an electric field of strength **E**, a charged particle experiences a force, which is given by

$$\mathbf{F}_{\mathbf{E}} = \mathbf{q}\mathbf{E} \,. \tag{4}$$

Here

$$q = ne \tag{5}$$

where e is the elementary unit of charge and n is the number of elementary units carried by the particle. ($e = 1.6 \times 10^{-19}$ coulombs (MKS)= 4.8×10^{-10} Statcoulombs (electrostatic cgs unit).)

Particle Mobility

Particle mobility is defined as the velocity that it will acquire when subjected to an electric field of unit strength. Equating the drag and Columbic forces, it follows that

$$qE = 3\pi\mu Ud/C_c$$
(6)

For E = 1, the mobility becomes

$$u = Z^{p} = \frac{qC_{c}}{3\pi\mu d}$$
⁽⁷⁾

Particle Charging

Aerosol particle can be electrified by a number of different processes. Among the important ones are: Direct ionization, static electrification, electrolytic effects (liquids of high dielectric constant exchange ions with metals), contact electrification, spray electrification, frictional electrification, collisions with ion, diffusion, and field charging.

Boltzmann Equilibrium Charge Distribution

Under equilibrium conditions, the aerosols approach the Boltzmann charge distribution. Accordingly, the fraction of particles having n unites of charge of one sign, f(n), is given by

$$f(n) = \frac{\exp\{-n^2 e^2 / dkT\}}{\sum_{n=-\infty}^{\infty} \exp\{-n^2 e^2 / dkT\}}.$$
(8)

For $d > 0.02 \mu m$, the approximate expression for the charge distribution becomes

$$f(n) = \sqrt{\frac{e^2}{dkT\pi}} \exp\{-\frac{n^2 e^2}{dkT}\}.$$
 (9)

For a room temperature of 20° C, (9) reduces to

$$f(n) = \frac{0.24}{\sqrt{d\pi}} \exp\{-\frac{0.05n^2}{d}\} \quad d \text{ in } \mu m \qquad \text{for} \qquad d > 0.02\mu m.$$
(10)

The average number of charge per particle is given by

$$\overline{\mathbf{n}} = \sum_{-\infty}^{\infty} |\mathbf{n}| \mathbf{f}(\mathbf{n}) \approx \int_{-\infty}^{\infty} |\mathbf{n}| \mathbf{f}(\mathbf{n}) d\mathbf{n} \approx \sqrt{\frac{dkT}{\pi e^2}} \qquad \text{for} \qquad d > 0.02 \mu \text{m} \,.$$
(11)

Electric Field of a Point Charge

The electric field strength of a point charge at a distance r is given by

$$E = \frac{\gamma q}{4\pi r^2},$$
(12)

where $\gamma = 4\pi/\epsilon$ for cgs or electrostatic unit with ϵ being the dielectric constant of the medium. For air, $\epsilon = 1$, $\gamma = 4\pi$, and $\gamma = \frac{1}{\epsilon_0 \epsilon}$ (for MKS).

Coulomb's Law

Combining (5) and (12), we find

$$F = q'E = \frac{\gamma q'q}{4\pi r^2}, \qquad (cgs)$$
(13)

which is Coulomb's law for forces between two charge particles. Note that in the MKS units, $\gamma = \frac{1}{\varepsilon_o \varepsilon}$, and the permittivity (dielectic constant) of free space, $\varepsilon_o = 8.859 \times 10^{-12} \frac{\text{amp-sec}}{\text{volt-meter}}$.

$$F = \frac{q'q}{\epsilon r^2} (9 \times 10^9) , \quad (MKS).$$
(14)

Field Charging

When a particle is in an electric field, the particle acquires charges due to collisions with ions, which are moving along the lines of force that intersect the particle surface. This process is known as field charging. The number of charges accumulated by the particle is given by

$$n = \left[\frac{\pi e Z_i n_{i\infty} t}{\pi e Z_i n_{i\infty} t + 1}\right] \left(1 + \frac{2(\varepsilon_p - 1)}{\varepsilon_p + 2}\right) \frac{Ed^2}{4e}, \quad (cgs),$$
(15)

where t is time, Z_i is the mobility of ions, $n_{i\infty}$ is the ions concentration far from the particle, e is the electronic charge, ε_p is the dielectric constant of the particle, and E is the electric field intensity.

For sufficiently large time,

$$n_{\infty} = \left[1 + \frac{2(\varepsilon_{p} - 1)}{\varepsilon_{p} + 2}\right] \frac{Ed^{2}}{4e} \qquad \text{as } t \to \infty.$$
(16)

The factor $\left[1 + \frac{2(\varepsilon_p - 1)}{\varepsilon_p + 2}\right]$ is a measure of distortion of the electrostatic field by the

particle. The factor varies between 1 and 3 for $\varepsilon_p = 1$ to ∞ . For dielectric materials, the values of ε_p usually are less than 10. ε_p is 4.3 for quartz and 2.3 for benzene.

Diffusion Charging

Even in the absence of an external electric field, particles exposed to an ion cloud become charged. Ions will collide with the particle due to their thermal motions. As the particle becomes charged, it will repel ions of the same sign and leads to a non-homogenous distribution of ions in its neighborhood. After time t, the number of charge acquired by the particle is given by

$$n = \frac{dkT}{2e^2} \ln[1 + (\frac{2\pi}{m_i kT})^{1/2} n_{i\infty} de^2 t], \qquad (cgs)$$
(17)

where m_i is the ionic mass and $(\frac{kT}{2\pi m_i})^{1/2}$ is the mean velocity with which the ions strike the particle surface.

As $t \to \infty$, the number of charge (according to the formula) also approaches infinity, which is not correct. However, for typical values of $n_{i\infty}t \simeq 10^8$ ion sec/cm³, the equation gives reasonable results, especially for particles, which are smaller than the mean free path.

Electrical Precipitation

Electrical precipitation is used widely in power plants for removing particles from discharging smokestacks. In the most common type, the dusty gas flows between parallel plate electrodes. The particles are charged by ions generated in a corona discharge surrounding rods or wires suspended between the plates. Figure 1 shows schematics of electrostatic precipitators.

Figure 1. Schematics of electrostatics precipitators.

In the precipitators the cloud of electrons and negative ions moves towards the collecting electrodes. Particles are charged by field or diffusion charging, depending on their size. The Reynolds number is of the order of 10^4 or greater and hence the flow is turbulent. The flux normal to the collecting plate is given by

$$\bar{\mathbf{J}} = -(\mathbf{D} + \mathbf{v}^{\mathrm{T}})\frac{\partial \overline{\mathbf{C}}}{\partial \mathbf{y}} - \mathbf{u}_{\mathrm{e}}\overline{\mathbf{C}}, \qquad (18)$$

where U_e is the particle migration velocity towards the plate given by

$$u_{e} = \frac{EqC_{e}}{3\pi\mu d}.$$
(19)

Here, q is the charge on the particle and E is the intensity of the electric field.

For $\,u_{_e}\,$ being a constant, assuming $\,\overline{J}\,$ remains constant, it follows that

$$\frac{\overline{C}}{\overline{C}_{\infty}} = \frac{1 - \exp\{-\int_{0}^{y} \frac{u_{e} dy}{D + v^{T}}\}}{1 - \exp\{-\int_{0}^{\infty} \frac{u_{e} dy}{D + v^{T}}\}}$$
(20)

and

$$\overline{J}(x) = \frac{-u_e \overline{C}_{\infty}}{1 - \exp\{-u_e \int_0^{\infty} \frac{dy}{D + v^T}\}} = -\frac{u_e \overline{C}_{\infty}}{1 - \exp\{-\frac{u_e}{u_D}\}}$$
(21)

where

$$u_{\rm D} = \frac{1}{\int_{0}^{\infty} \frac{\mathrm{d}y}{\mathrm{D} + \mathrm{v}^{\rm T}}},\tag{22}$$

is the deposition velocity due to combined Brownian and turbulent diffusion.

For $u_e \ll u_D$, it follows that $|J| = u_D \overline{C}_{\infty}$ and deposition is controlled by diffusion. When $u_D \ll u_e$ as is the case for electrical precipitators, $|J| = u_e \overline{C}_{\infty}$. For a length dx length,

$$bUd\overline{C}_{\infty} = 2Jdx = -2u_{e}\overline{C}_{\infty}dx.$$
⁽²³⁾

Hence,

$$\overline{C}_{\infty} = \overline{C}_{\infty 0} \exp\{-\frac{2u_e x}{bU}\}.$$
(24)

For a length L,

ME637

$$\frac{\overline{C}_{\infty L}}{\overline{C}_{\infty 0}} = \exp\{-\frac{2u_e L}{bU}\}.$$
(25)

Figure 2 shows typical collection efficiencies of electrostatic precipitators.

Figure 2. Variation of collection efficiency of an electrostatic precipitator.

Field Strength

The electrostatic potential V satisfies a Poisson equation given as

$$\nabla^2 \mathbf{V} = -\gamma \rho_s, \tag{26}$$

where $\rho_{\scriptscriptstyle S}$ is the space charge per unit volume. Then electric field is given as

$$\mathbf{E} = -\nabla \mathbf{V} \tag{27}$$

Particle Drift in an Electric Field

The equation of motion of a particle in an electric field is given by

$$m\frac{d\mathbf{u}^{p}}{dt} = \mathbf{F}_{\mathbf{D}} + \mathbf{F}_{\mathbf{G}} + \mathbf{F}_{\mathbf{E}}, \qquad (28)$$

where the forces are due to drag, gravity, and electric field. Equation (28) may be restated as

$$\tau \frac{d\mathbf{u}^{\mathbf{p}}}{dt} = \mathbf{u}^{\mathbf{f}} - \mathbf{u}^{\mathbf{p}} + \tau \mathbf{g} - \mathbf{E}q\frac{\tau}{m}.$$
(29)

Equation (29) may be restated as

$$\tau \frac{\mathrm{d}\mathbf{u}^{\mathbf{p}}}{\mathrm{d}t} + \mathbf{u}^{\mathbf{p}} = \mathbf{u}_{\mathbf{o}} - \mathbf{E}\mathbf{q}\frac{\tau}{m},\tag{30}$$

where $\mathbf{u}_{o} = \mathbf{u}^{f} + \tau \mathbf{g}$. Suppose **E** is in the same direction as \mathbf{u}_{o} , non-dimensionalizing with respect to \mathbf{u}_{o} , we find

$$\tau \frac{d\dot{u}}{dt} + \dot{u}^{p} = 1 - \Gamma, \qquad (31)$$

where

$$\hat{u}^{p} = \frac{u^{p}}{u_{0}}, \qquad \Gamma = \frac{Eq\tau}{mu_{0}}$$
(32)

If $|\Gamma| >> 1$, then the electrical force dominates. In this case, if the inertia is also neglected, we find

$$\hat{U}^{p} = -\Gamma \text{ or } u^{p} = -Eq\frac{\tau}{m}.$$
(33)

In addition to the gravitational and electrical forces, particles could experience forces induced by temperature gradient, concentration gradient, and electromagnetic radiation. These are discussed in the next section.