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Experimental Data for Particle Deposition in Turbulent Flows 
 
 Extensive reviews of the experimental data for particle deposition in a vertical 
duct were reported by McCoy and Hanratty (1977) and Papavergos and Hedely (1984).  
The trend of the experimental data is shown in Figure 1.   For very small particles, the 
Brownian motion significantly affects the deposition rate and the deposition velocity 
increases as particle relaxation time (diameter) decreases.  The minimum deposition 
velocity occurs in the range of 12 10510 −+− ×<τ< .  For larger particles, the deposition 
velocity increases rapidly with the relaxation time up to 20≈τ+ , and then saturates to a 
constant value of about 0.18.  For a vertical duct flow, Papavergos and Hedely (1984) 
suggested  
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In Figure 1 the prediction of the modified version of Papavergos and Hedely (1984) 
equation given by 
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is compared with the experimental data.  Here a shear velocity of 0.3 m/s and a density 
ratio of 2000 is assumed.  The model of Fan and Ahmadi (1993) is also shown in this 
figure for comparison.   It is seen that the model predictions are in good agreement with 
the data. 

 
For a horizontal duct, Papavergos and Hedely (1984) suggested  

 
Floor Deposition 
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D 102u +−+ τ×=   for  202.0 <τ< +                (5) 

 
Ceiling Deposition 
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D 104u +−+ τ×=   for  202.0 <τ< +                     (6) 
 

The model predictions of Equations (5) and (6) modified by addition of the Brownian 
deposition term are shown in Figure 2.  It is seen that the model predictions are in 
reasonable agreement with the trend of the experimental data. 
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Figure 1. Comparison of the model predictions with the trend of experimental  
data for a vertical duct. 

 

Figure 2. Comparison of the model predictions with the trend of experimental  
data for a horizontal duct. 
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While the empirical equations appear to provide reasonable fits to the data, they are 
limited in that they do not account for the effects of density ratio fp /S ρρ= , flow 
Reynolds number, or spectral characteristic of turbulence. 
 
 
 
Summary of Classical Turbulence Deposition Models 
 
 

Near a wall, the particle mass flux is given by 
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where D  and ΤD  are Brownian and turbulent particle diffusitivities.  In terms of wall 
units, Equation (7) may be restated as 
 

 +

+
+Τ++

∂
∂

+=
y
C)DD(uD ,  1

cSD −+ =             (8) 

 
where the non-dimensional deposition velocity is defined as 
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and 
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where 0C  is the bulk concentration.  In most earlier theories, it was assumed that 
 
 ΤΤ ν=D ,  +Τ+Τ ν=D .            (11) 
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Friedlander and Johnstone Model  (Free Flight) 
 
 The earliest model for turbulent deposition was reported by Friedlander and 
Johnstone (1957).  Their key assumptions were 
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b) Particles that are reaching the stopping distance from wall will deposit on the wall 

(free flight model). Thus, 0)
2

ds(C =+
+

+  is used as a boundary condition. Here, 

τ= fUs , where fU  is the particle free flight velocity and τ is the relaxation time. 
 

a) Free flight velocity is assumed to be given by 
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where f  is the friction factor. 
 

 
 Using these assumptions, Friedlander and Johnstone (1957) found the following 
expressions for the deposition velocity: 
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where 
 
 ++ τ= 9.0s               (17) 
 
 

The prediction of the Friedlander-Johnstone model is compared with the 
experimental data and other models in Figures 3-5.  In Figure 5 the diffusion term is 
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linearly added to the model to cover the Brownian range as well.  It is seen that the model 
well predicts the increasing trend of the deposition velocity with the particle relaxation 
time in the eddy impaction range. 

    
While the model gives relatively reasonable results for the eddy impaction 

regime, the assumptions of free flight model with the initial velocity given by (13) are 
difficult to justify. In addition, Equation (16) implies that +

Du  increases with 
f ( 17.0Re039.0 −= ). Thus, +

Du  increases with decreasing Re , which is not supported by 
the experimental data. 
 
 

 
 
 

Figure 3. Comparison of the model predictions with the experimental  
data for a vertical duct as reported by Papvergos and Hedely (1984). 

 
 

Levich Model 
 
 Levich studies the deposition of molecular size particles with 1sc>> . He assumed 

4T y~ +ν  and found 
 
 4/3
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It is now known that 3T y~ +ν .  The predictions of Levich’s model are also shown in 
Figure 3-5.  It is seen that the model gives reasonable results for the diffusion range.  
 

 
Figure 4. Comparison of different model predictions for a vertical duct as reported by 

Papvergos and Hedely (1984). 
 
 
 
 



 
 

ME637  G. Ahmadi 7

 
 

 
 

Figure 5. Comparison of different model predictions for a vertical duct for particles with 
a density ratio of 1000.  (The diffusion term is added linearly to the models of 

Friedlander and Johnstone (1957) and Papvergos and Hedely (1984)). 
 
 
 
Davies Model 
 
 For sub-micron particle, Davies found 
 

3/2
cD s057.0u −+ = ,                (19) 

 
which the one used in Wood’s model.  For µ> 1d , he used an empirical expression for 

Tν  across the entire boundary layer and evaluated +
Du . He also made use of stopping 

distance and free-flight model, however, with a more realistic local RMS fluctuation 
velocity as the initial free-flight velocity.  Davies’ model predictions are shown in 
Figures 3 and 4.  While Davies’ assumptions appear to be more realistic, his deposition 
velocity significantly underestimates the data. 
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Additional Models 
 
 There have been a number of attempts to improve the models of Friedlander and 
Johnstone.  Beal tried to improve the agreement of Davies’ approach with the 
experimental data.  He suggested using one-half of the mean axial velocity as the initial 
free-flight velocity for calculating the stopping distance.  He also postulated that the 

concentration of particles of 
2

dsy
+

++ +=  is not zero and a continuous rate of 

accumulation of particles takes place in this region, which acts as an added resistance to 
particle wall deposition. 
 
 Sehmel used an analysis similar to Davis but employed equation of Lin et al. for 
eddy diffusivity. To fit the data, he found the free-flight velocity must be correlated to the 
particle relaxation time as 
 
 49.0

f )(49.1U −++ τ=              (20) 
 
In addition, he used an empirical correlation for particle turbulent mass diffusivity as 
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 Liu and Ilari suggested that the particle diffusivity is greater than the eddy 
diffusivity and is given as 
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where coefficient of +τ  is the estimated MS fluctuation velocity. The predictions of these 
different models are shown in Figures 3 and 4. 
 
 
Limitations of Free-Flight Models 
 
 The class of models that are initiated with the work of Friedlander and Johnstone 
is referred to as the free-flight models.  While the general trend of the particle deposition 
velocity is reasonably well predicted by these models, there are a number of limitations 
with the assumption used in their derivation. These are:  
 

• Use of the concept of ‘stopping distance’ as a sink boundary condition for 
particles. 
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• Assumption that the free-flight velocity is equal to RMS radial fluid fluctuation 
velocity (or proportional to the axial velocity). 

 
• Equality of particle mass diffusivity to the turbulence eddy diffusion. 

 
• Ignoring the effects of density ratio, Reynolds number, and interactions with 

various scales of turbulence. 
 

• Ignoring the effects of lift force. 
 

• Ignoring the effects of coherent eddies and bursting phenomena. 
 
 
Cleaver and Yates Model 
 
 It is well known that burst phenomena occur in a turbulent boundary layer. That is 
periodically, fluid is being ejected away from the wall and that is followed by a down-
sweep and inrush of fluid toward the wall. Cleaver and Yates assumed that 
 
• Suspended particles are able to diffuse to a certain distance from the wall by turbulent 

diffusion before being entrained in a down-sweep. 
 
• The flow in a down-sweep may be approximated as a two-dimensional stagnation-

point flow in the sub-layer. 
 
• Only the Stokes drag is acting on the particles. 
 
Their expression for the deposition velocity involves integrating over the stagnation-point 
velocity field. For small +τ , a simplified expression becomes available. i.e. 
 

 3/2
p

f

D Sc084.0}48.0exp{
400
9u −+++ +ττ

ρ
ρ

= ,              (23) 

 
where the diffusion effects is also linearly added to the model. 
 

The predictions of Cleaver and Yates’ model as given by Equation (23) for 
density ratios of S= 500, 1000 and 2000 are shown in Figure 6 and are compared the 
models of Papavergos and Hedley (1984) and Fan and Ahmadi (1983) for a density ratio 
of 1000. 
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Figure 6. Comparison of model predictions of Cleaver and Yates for different density 
ratios with those of Papvergos-Hedely  and Fan-Ahmadi. 

 
 
 
Structure of Turbulence Near a Wall 
 
 The structure of turbulent flow near a wall and in particular in the viscous sub-
layer significantly affects the deposition of particles on the wall. Certain features of 
turbulent flow, which have important consequences for aerosol deposition process, are 
described in this note. 
 
 For a low Reynolds number channel flow, turbulence intensity distributions are 

shown in Figure 7.  It is observed that +'v  reaches its maximum of about 1 at 2.0
b
y
≈  

( 5040y −=+ ).  The maximum of +'u  appears a much shorter distance from the wall. 
The peak value here is about 2.9.  However, a range of values for +

max'u  between 2.3 to 
3.4 has been reported in the literature.  The near wall region is also of considerable 
interest, since the major portion of turbulence production takes place in this region. 
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Figure 7. Variations of turbulence intensity distributions in a channel. 
 
 
 
Streaky Nature of the Wall Flow 
 
 It is now well recognized that the viscous wall region has a fairly ordered three-
dimensional structure. Flow visualization shows streaky structures in the viscous sub-
layer. Low speed streaks are found to continue for large stream-wise distances of the 
order of 1000 wall units. The streaks have a mean spacing of about 100 wall unites which 
appears to be independent of the flow Reynolds number as shown in Figure 8. 
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Figure 8. Variations of mean nondimensional streak spacing as function of momentum 

thickness Reynolds number.  Comparisons with the trend of experimental data of  
Kline et al. (1967), Oldaket et al. (1977) and Smith et al. (1979). 

 
The spacing is also lag-normally distributed and has a standard deviation of about 

40 wall units.  The streaks leave a width of 10-30 wall units and an aspect ratio of about 
30 to 100. The streaks are believed to be formed by counter-rotating elongated vortices, 
which appear as organized structures near a wall.  A schematic of the near wall eddies is 
shown in Figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Schematics of near wall coherent vortices. 
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Bursting Phenomena 
 
 The streaks are observed to be lifted from the wall into the buffer region, which 
leads to an oscillating motion, which terminates in a chaotic break-up of the flow. During 
this quasi-periodic process, a major part of turbulence production occurs. 
 
 The lift-up produces a region of low-speed flow in the buffer zone. The 
instantaneous velocity profile becomes inflexional, which is highly unstable. Thus, an 
oscillation follows, which in turn leads to a rapid and violent mixing that is referred to as 
the break-up. During this phase, fluid is being ejected upward at a steep angle of about 
20o. After this chaotic phase, a “sweep” motion towards the wall at a small angle follows. 
 
 The average time between the burst BT  satisfies the following empirical 
equations: 
 

 73.0
B R65.0T θ
+ = , 5TV B0 ≈

δ
.            (24) 

 
The duration of burst/sweep/inrush is roughly BT25.0 . 
 
 Kline et al. hypothesized that the lift-up of the low-speed streak and the burst 
phenomena is associated with the formation of a horseshow vortex. The counter-rotating 
stream-wise vortices (with their center at 3020y −=+ ), which form the streaks, may be 
the legs of a horseshoe vortex.   Landahl (1983) proposed a model for predicting the 
variation of >< +u  during a burst. 
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Cleaver-Yates Model (Chem. Eng. Sci. 30 (1975) 983) 
 
 
 Cleaver and Yates developed a model for turbulent deposition that includes the 
effect of near wall flow structure.  A schematic of the near wall coherent eddies is shown 
in Figure 10.  According to this model, particles with sufficient inertia will not follow the 
flow streamlines and impact the wall.  Thus the turbulent deposition is dominated by the 
impaction process in the coherent wall eddies.  They defined a limiting trajectory for the 
particles that are deposited on the wall.  All particles within the limiting trajectory will 
deposit on the wall, while those out side the limiting trajectory will be entrained back into 
the core flow. 
 

 
Figure 10. Schematics of near wall eddies. 

 
 
 The turbulent flux toward the wall is given as 
  

)y(A)y(v)y(CJ c0= ,                  (25) 
 
where 0v  in the RMS turbulence fluctuations perpendicular to the wall, C(y) is the 
concentration, and  cA  is the capture area ratio (the ratio of the area between the limiting 
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trajectory and the centerline to the total area).  The corresponding deposition velocity is 
given as 

 
2
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Note that the capture area ratio is given as 
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=− 0
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 The particle trajectory in the presence of only the drag force is given as  
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For small particle relaxation time, +τ , using an iterative solution and expanding the total 
derivative, it follows that   
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The down flow pattern of the near wall eddies may be modeled as plane 

stagnation flow.  For a plane stagnation point flow, 
 

 )('zwf ηϕα= ,  )(vf ηϕαν−= ,  y
ν
α

=η .                 (32) 

 
where ϕ  satisfies the following equation (Schlichting, 1960): 
 
 01'''''' 2 =+ϕ−ϕϕ+ϕ ,                            (33) 
 
In Equation (32), Cleaver and Yates assumed 
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so that  
 

2
1vf =+  at 10y =+ .                            (35) 

 
 Evaluating Equations (30) and (31), and solving for the limiting trajectory, it 
follows that  
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For the boundary condition at the wall for the limiting trajectory, Cleaver and Yates 
assumed 
 

2
dy
+

+ =   at  70z =+ .                    (37) 

 
(Note that the value 70z =+ is too high.  The correct boundary condition is .25z =+ ) 
When +

oz  is known, then 
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Cleaver and Yates used Laufer’s data near the wall and found 
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Note that cA  varies with +

0y , and 10y0 =
+  was used by Cleaver and Yates.   They also 

argued that a large correction factor is needed to account for the convection  effects that 
are neglected.  This lead to  
 

cD A5.8u =+ .                       (41) 
 

For the diffusion range, Cleaver and Yates suggested  
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 3/2
cD S084.0u −+ = .                            (42) 

 
Alternatively, Chamberlain suggested 
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Using (41) and (42), the minimum deposition rate occurs at 
 

 .069.0S
f

p3/2
c ρ

ρ
=τ+                                       (44) 

 
 Combing the effects of inertial and Brownian, the model equation of Cleaver and 
Yates is given by Equation (23).  The predicted deposition rates for a range of density 
ratios are shown in Figure 9, and are compared with other models.  
 
 
Fichman et al., J. Aerosol Sci. 19, 123 (1988) 
 
 Fichman et al. (1988) used the model of Cleaver and Yates, but included the lift 
force effect.  In addition, they fit semi-analytical expression to the velocity field for 
different range of distances near the wall.   Accordingly 
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The particle flux to the wall then is given by 
 

 ++ = 0cD vA
2
1u ,                                  (49) 

 
where +

0v  is the downsweep velocity and  
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The corresponding deposition velocity is then given as  
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and limz is the distance from the centerline.  
 
 

The equations of motion including the drag and lift forces are: 
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where 
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For small stopping distance with 2s ≤+ , Fichman et al. (1988) found that  
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where the modified stopping distance is given as  
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For 2s ≥+ , no closed form solution is available and they used a numerical simulation 
procedure for effective evaluation of the deposition velocity. 
 


