

PREPARATION OF	F METALLIC PARTICLES
• Phase 'break down'	- Milling/grinding - Atomization
Phase 'transformation'	- Thermolysis/Pyrolysis - Reduction
• Phase 'build-up'	- Condensation in gas phase $(Me^0)_g$ - Condensation in liquid phase $(Me^0)_l$

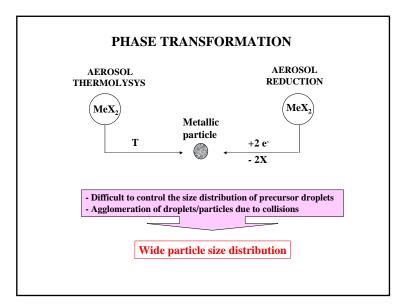
PHASE 'BREAK DOWN' / MILLING

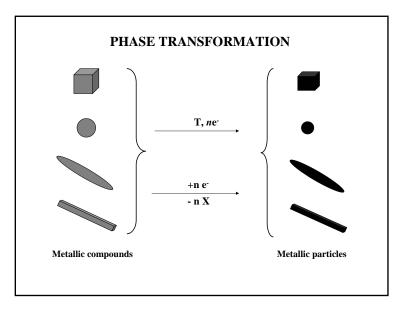
Size reduction of coarse/agglomerated metallic powders

- Mechanical energy (shear, collision)
- Dispersion media (liquid or gas)
- Dispersing agents
- Controlled atmosphere and temperature frequently required

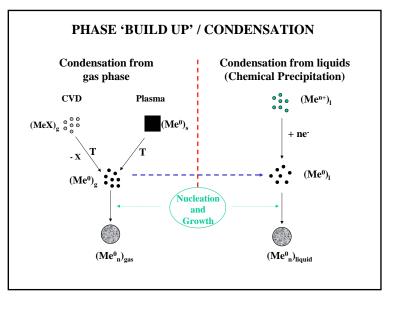
Suitable for some applications (mechanical alloying)
Rarely yields highly monodispersed, spherical particles

PHASE 'BREAK DOWN' / ATOMIZATION


Spraying/pulverization of molten metals

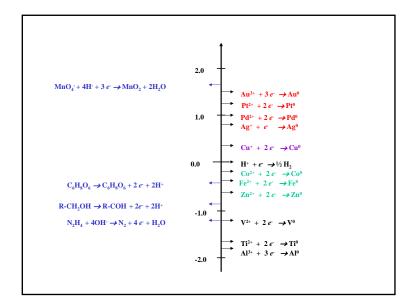

· Large particles, broad size distributions




Generation of the second second

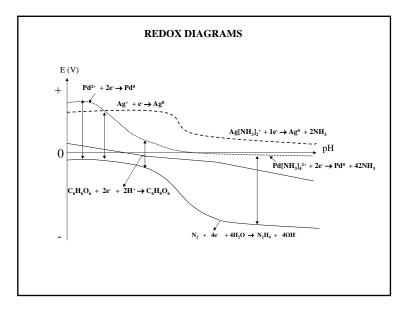
- · Capable to produce a large variety of alloy powders
- Low manufacturing costs
- Inert carrier gases may be required

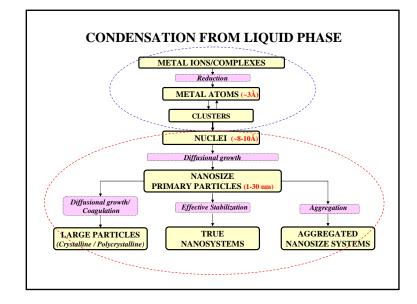
CHEMICAL PRECIPITATION
Metal atoms generated 'via' redox reactions:

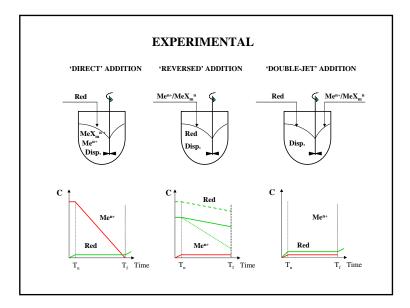

$$Me^{n+} + Red \rightarrow Me^{0} + Ox$$
Driving force:

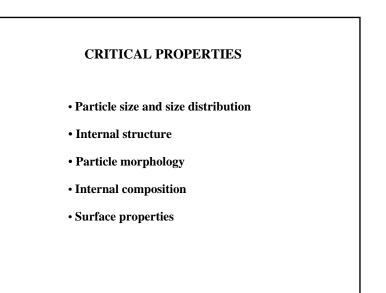
$$\Delta E^{0} = E^{0}_{I} \cdot E^{0}2$$

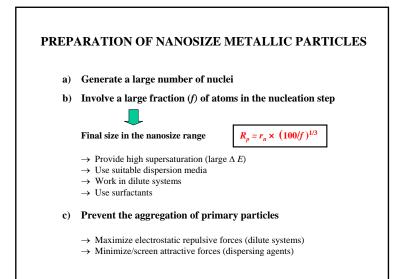
$$\ln K_{e} = nF \cdot \Delta E^{0}/RT$$

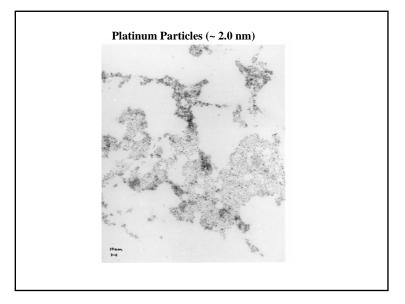

$$\Delta E^{0} \rightarrow \text{critical supersaturation}$$

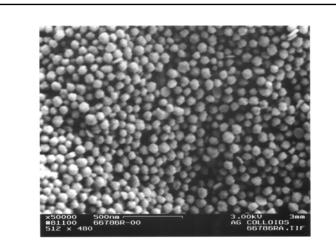

$$\rightarrow \text{nucleation rate}$$




TAILORING ∆E ⁰							
	Ag+ +	1e ⁻	$\rightarrow Ag^0$	$E^0 = +0.799$	V		
Precipitation	ı	Ag ⁺ + Cl ⁻	→ AgCl	K	_{sp} = 1.82 x 10 ⁻¹⁰		
	AgCl	+ 1e ⁻	$\rightarrow Ag^0 +$	Cl-			
E^0_{AgC}	$= E^{0}_{Ag+} - 0.0$	59/1 log[Cl ⁻]/I	K _{sp} = 0.799 -	$0.059(\log[Cl^{-}] - \log K$	$_{sp}) = 0.222V$		
	AgI Ag ₂ S		$K_{sp} = 3.0 \times 1$ $K_{sp} = 6.3 \times 1$		$^{0} = -0.152$ V $^{0} = -0.710$ V		
• Complexatio	n	$Ag^+ + 2NH$	$H_3 \rightarrow Ag[NH]$	$[I_3]_2^+$ $pK_f = 10^{-7.4}$			
	Ag[NH ₃] ₂ ⁺ + 1e ⁻	$\rightarrow Ag^0 + 2b$	NH ₃			
$E^0_{Ag[NH3]2} = E^0_{Ag}$.+ - 0.059/1 log	g[Ag ⁺][NH3] ² /	[Ag(NH3)2]	$^{+} = 0.799 - 0.059(pK_{\rm f})$	= 0.373V		
Ag(S	${}_{2}O_{3}O_{3}O_{3}O_{2}O_{3}O_{3}O_{2}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3$	$\rightarrow Ag^{+}$ +	$2S_2O_3^2$ p	$K_f = 8.68$ E $K_f = 13.46$ E $K_f = 19.85$ E	$^{0} = 0.010 V$		
Concentration	on						
		059 log [Ag ⁰]/ [Ag ⁺] = 10 ³ M		99 + 0.059 log[Ag ⁺] = 0.777V			


TAILORING ∆E ⁰		
• Effect of the p	он	
\rightarrow Whenever	H+ or OH- species are involved in the reaction	
Examples		
a)	$C_6H_6O_6 + 2e^- + 2H^+ \rightarrow C_6H_8O_6$	$\mathbf{E}^0 = -0.244\mathbf{V}$
$E^0 = E^0$	0 - 0.059/2 log[C ₆ H ₈ O ₆]/[H ⁺] ² [C ₆ H ₆ O ₆] = -0.244	- 0.059 (pH)
	$[{\rm H}^{\scriptscriptstyle +}] \ \uparrow \ , \ p {\rm H} \ \downarrow \ \ \Rightarrow {\rm C}_6 {\rm H}_8 {\rm O}_6 \ \ {\rm less \ strong \ res}$	eductant
b)	$N_2 + 4e^- + 4H_2O \rightarrow N_2H_4 + 4OH^-$	$E^0 = -1.160V$
$E^0 = E^0$	⁰ - 0.059/4 log1/[OH ⁻] ⁴ = -1.160 + 0.059 (14 - pH	I)
	$[H^+] \uparrow$, pH $\downarrow \implies$ Hydrazine becomes a less str	rong reductant



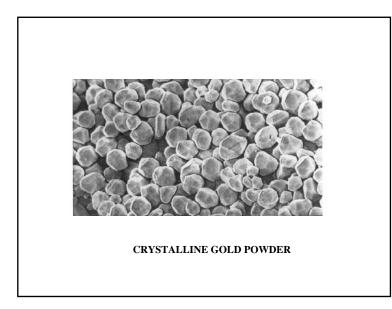


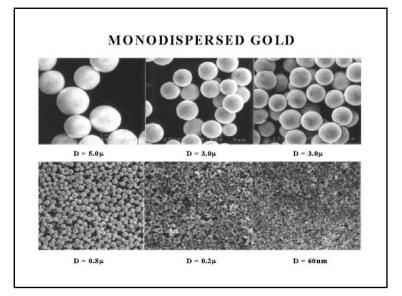
Nanosize Silver Particles (~90 nm)

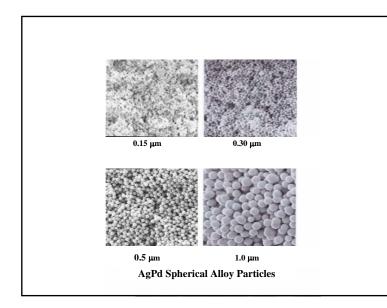
PREPARATION OF LARGE PARTICLES

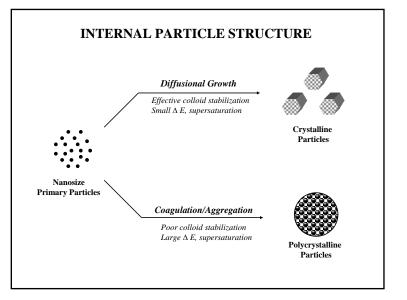
A. CRYSTALLINE \rightarrow diffusion growth

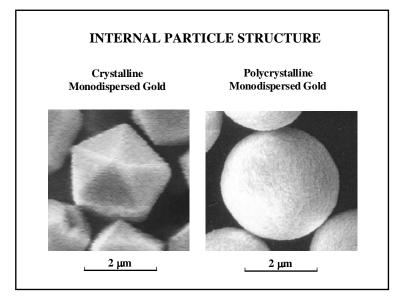
- Slow nucleation (small ΔE , strong metallic complexes)


- Slow addition of precursors in the system
- Use of seeds
- Very effective stabilization


B. POLYCRYSTALLINE PARTICLES → aggregation

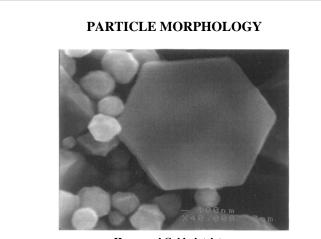

- Control the attractive/repulsive forces by adjusting:


- Ionic strength
- pH
- Activity of the dispersant/protective colloid


- More versatile in controlling the size of the particles

IMPORTANCE OF PARTICLE STRUCTURE

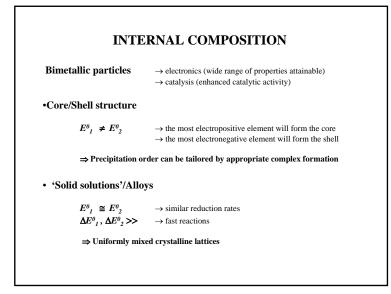
A. Electronics/Thick film


Due to the absence of internal grain boundaries, highly crystalline particles of PM yield dense, continuous, thinner, and more conductive 'fired' films.

B. Electronics/Oxidation of base metals

Highly crystalline base metals (Cu, Ni) are more resistant against oxidation when used as precursors for thick film conductors.

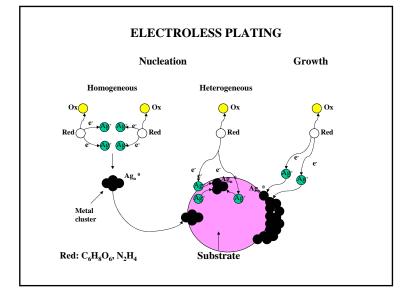
C. Medicine/Biology

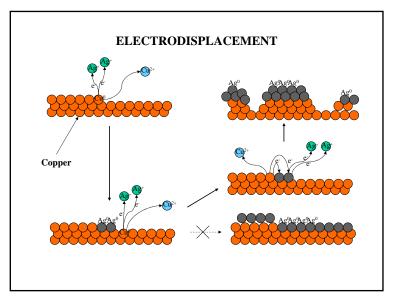

Highly crystalline, dense gold particles are more effective as carriers of drugs/vaccines through biological tissues.

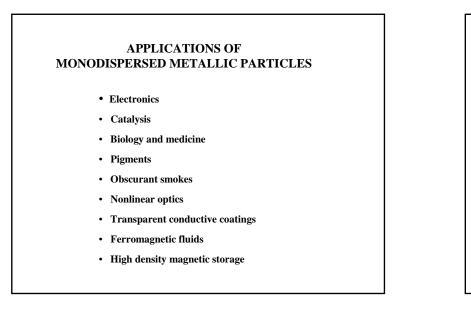
Hexagonal Gold platelets

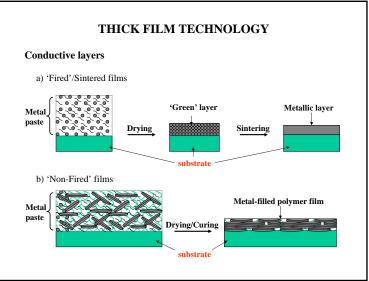
PARTICLE MORPHOLOGY PARTICLE MORPHOLOGY

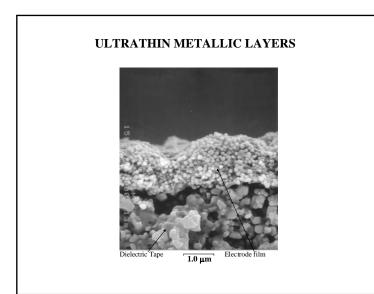
Crystalline Pd Particles

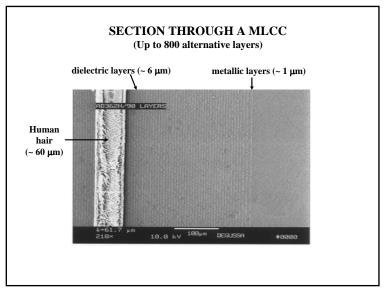

SURFACE PROPERTIES

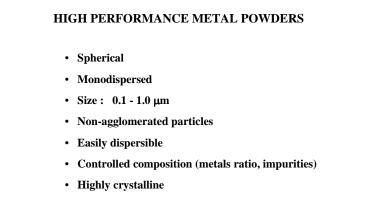

IMPACT

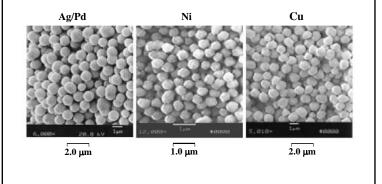

- Dispersibility in liquids
- Self assembly properties
- Sintering characteristics
- Catalytic activity
- Adhesion properties
- Corrosion

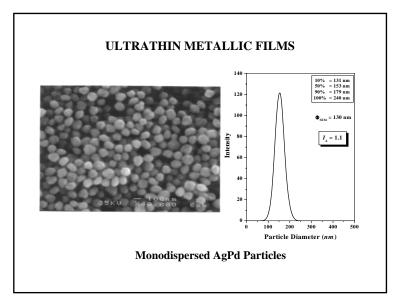

TAILORING SURFACE BEHAVIOR

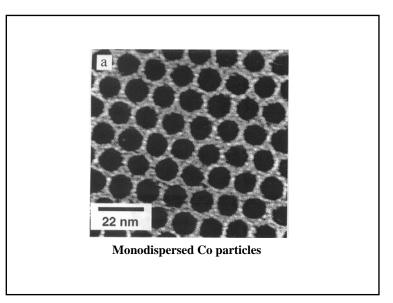

- Selection of precipitation environment (reductant, dispersant, solvent)
- Subsequent surface treatment (performed on either wet or dry powders)
 - Coating with organic compounds
 - Coating with inorganic compounds
 - Coating with metals

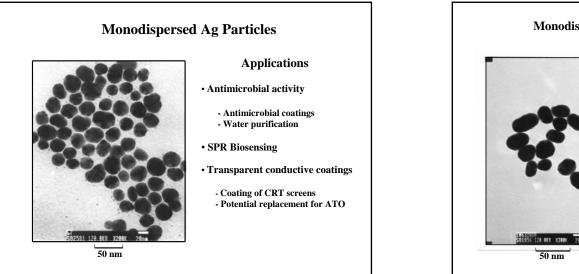


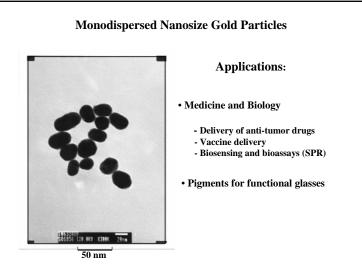


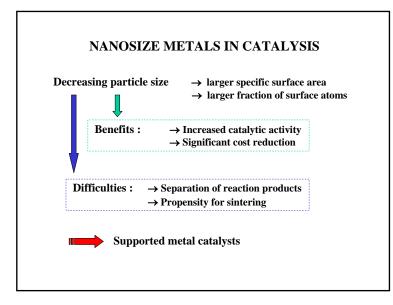


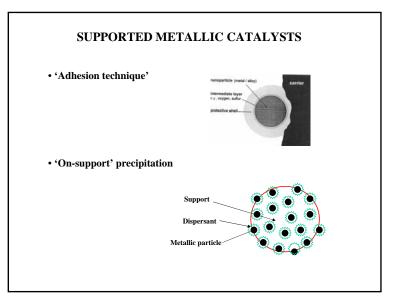


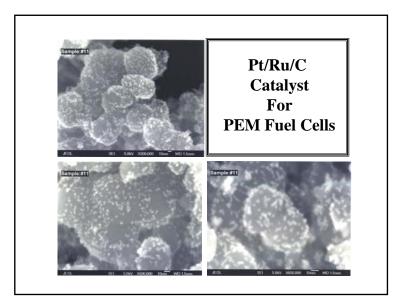


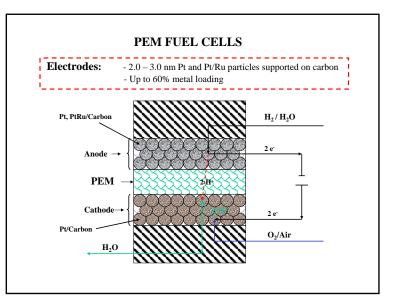

• Controlled sintering behavior


MONODISPERSED METAL POWDERS









CONCLUSIONS

• Chemical precipitation is a versatile technique capable to yield non-agglomerated monodispersed metallic particles with:

- wide range of modal diameters (1 nm to several microns)
- controlled internal structure and morphology
- controlled composition
- controlled surface characteristics

Materials for many existing and emerging fields of high technology

CHALLENGE:

Assembly of fine particles (nanoparticles) into ordered mono, bi, and three-dimensional complex structures structures