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Definitions

• Direct Numerical Simulation (DNS): 
solution of the continuity and Navier-Stokes 
equation without modeling.

• Large Eddy Simulation (LES): approximate 
solution of the continuity and Navier-Stokes 
equation on a “coarse grid” with some 
modeling.
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Turbulent channel flow (mean flow 
into page)
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Characteristics of turbulent flow

• Velocity at each point is time-dependent
• Flow contains “eddies” that form and 

disappear continually
• Large range of length scales
• Large range of time scales
• Good at mixing chemicals, heat, momentum
• Re>>1
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Computer time for DNS
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We must resolve he smallest eddies 
and the shortest time scales.
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Numerical Solution of PDE’s

• The solutions are computed at a discrete set 
of times. This is called “time 
discretization”. 

• The dependent variables are computed on 
“grid points”. This is called “spatial 
discretization.” For DNS, the distance 
between grid points should be smaller than 
the smallest eddies.
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Example: Unsteady Thermal 
Conduction

• Governing equation:

where α is the thermal diffusivity
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Time Discretization
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Low Order Explicit Methods
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Euler forward

Adams - Bashforth
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Low Order Implicit Methods
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Euler backward

Crank - Nicolson
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Spatial Discretization: 1D 
Uniform Grid.
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Central Difference 
Approximation
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Discretized Equation
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“Tridiagonal” system of linear algebraic 
equations subject to boundary conditions at 
i=1 and i=N. Solve with Thomas algorithm.
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Numerical Stability

The tridiagonal system is implicit so 
it is stable for all values of the time 
step and grid spacing. The only 
restriction is accuracy. 

16

Fluid Mechanics
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Navier-Stokes and 
continuity equations.



5

17

Time Discretization

The time discretization is the same as 
for the 1-D temperature equation.

18

Spatial Discretization (2D)

Structured grid Unstructured grid
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Structured Grids

• Each point can be labeled by a pair (2D) or 
a triplet (3D) of integers without ambiguity.

• Usually, structured grids are used with 
Cartesian or “body-fitted” curvilinear 
coordinate systems and the grid points lie 
on coordinate curves.
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Methods for Single Phase DNS

• Finite difference
• Finite volume
• Pseudospectral
• Finite element (boundary element, spectral 

element)
• Lattice Boltzmann
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Pseudospectral Method

• Easy to formulate discretized equations.
• Exponential spatial convergence (less 

resolution is needed than for FDM or 
others).

• Limited to very simple geometries (periodic 
box, channel flow between infinite flat 
walls).
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DNS of turbulent flows with 
particles

• Let us consider turbulent flows with solid or 
fluid particles in gases or liquids.

• For spherical particles that are smaller than 
the “Kolmogorov length”, there are 
approximate equations of motion for the 
particles.

• In the “dilute” regime, small suspended 
particles have no “feedback” on the flow.
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One-way Coupling Regime

• “One-way coupling” means that the 
suspended particles have no effect on the 
flow of the fluid.

• For aerosol particles, this condition may be 
expressed by requiring that the mass 
loading of the particles is very small 
compared to unity.
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Aerosol Mass Loading
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where ϕ is the volume fraction,
ρp is the particle density,
ρg is the gas density.
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Particle Equation of Motion for 
Small Spherical Particles
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The force includes the drag, lift, 
gravitational, and Brownian forces.
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Particle position vector
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Particle Tracking

• We solve Newton’s law and the equation 
for the particle position vector as a set of 6 
(in 3D) ODE’s in time.

• Since the particles do not lie on grid points 
at any given time, it is necessary to use 
interpolation methods to compute the fluid 
velocity at the location of a particle.
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Interpolation Methods

• Trilinear (simple, but introduces 
discontinuities at grid “cell” boundaries.)

• Legendre (more accurate, although 
discontinuities still exist).

• Hermite (complicated, but no 
discontinuities).
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Homogeneous Turbulence

• Statistical (time average) properties (RMS 
velocity fluctuations, dissipation rate) are 
independent of position.

• Homogeneous turbulence can be modeled with 
randomly stirred turbulence in a cubic periodic 
box.

• The turbulence in a periodic box is homogeneous, 
but not isotropic. (Diagonals and edges are 
different.)

30

Navier-Stokes Equation with 
Random Stirring Force
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Periodic Cubic Box
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The velocity is a periodic 
function of x, y, and z with 
period L.
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Time Discretization – “Time 
Splitting”

• Each time step involves three sub-steps.
• First sub-step: the non-linear term is 

computed explicitly.
• Second sub-step: the pressure term is 

computed implicitly.
• Third sub-step: the viscous term is 

computed implicitly. 



9

33

Rotational Form of Navier-
Stokes Equation
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First Fractional Step
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Second Fractional Step
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Third Fractional Step
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Fourier Representation of the 
velocity and pressure fields

• We represent the velocity and pressure 
fields by three-dimensional Fourier series.

• Since Fourier series are periodic, the 
velocity and pressure fields are periodic.

• Calculations with the velocity and pressure 
are in “physical space”. Calculations with 
the Fourier coefficients are in “spectral 
space”
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Three-Dimensional Fourier 
Series
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Fast Fourier Transform
• FFT = Fast Fourier Transform, Cooley & 

Tookey (1966)
• If a Fourier series involving N terms is 

computed directly, the number of operations 
is proportional to N2

• With the FFT algorithm, the number of 
operations is proportional to NN 2log
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Procedure for Calculating the 
Velocity and Pressure

• The first fractional step is performed with 
the velocity field on a 3D grid with N3

points (physical space).
• The Fourier coefficients of the pressure are 

computed in spectral space.
• The Fourier coefficients of the velocity are 

computed in spectral space.
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FFT’s Needed for Each Time 
Step

• At the end of a time step, we have the 
Fourier coefficients of the velocity. 
Therefore, we need a 3D FFT to compute 
the velocity and vorticity for the first 
fractional step of the next time step.

• After computing the first intermediate 
velocity field (the “~” field), do an inverse 
3D FFT to obtain the Fourier coefficients.
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Pressure Step
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In spectral space:

43

Viscous Step
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Channel Flow-Inhomogeneous 
Turbulence

• Pressure driven flow between two flat, 
infinite, parallel plates.

• Let us assume that the flow is in the x-
direction and that the walls are located at 
z=h and z=-h.

• Assume that the flow is periodic in x and y
and use Fourier series in those directions, 
but use a Chebyshev series in z.
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Chebyshev Polynomials

• The convergence of Chebyshev series is 
independent of the boundary conditions, 
unlike Fourier series, because Chebyshev
polynomials are solutions of a singular 
Sturm-Liouville problem.

• We can still use FFT methods for 
Chebyshev series.
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Chebyshev Polynomials
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Spectral Representation for 
Channel Flow
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Aerosol Particle Trajectories in 
Homogeneous Turbulence

• The particles are initially randomly seeded 
in the flow.

• Since the particles have inertia, they are 
centrifuged out of regions of high vorticity.

• The particles have a higher average 
sedimentation velocity once they are no 
longer “trapped” in regions of high 
vorticity.
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The particles may be 
seen on the left and 
the magnitude of the 
fluid vorticity is 
shown on the right. 
The particles are 
centrifuged out of 
regions of high 
vorticity into regions 
of low vorticity.
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Equation of Motion for Small, 
Spherical Particles
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Cunningham Correction Factor

• The Cunningham factor, Cc, depends on the 
molecular mean-free path and the diameter 
of the particle

• Under normal conditions, the Cunningham 
factor is close to unity for aerosols that are 
larger than 1 micron.
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Calculation of Aerosol 
Trajectories

• To compute the trajectory of an aerosol 
particle, we need to solve 6 simultaneous 
ODE’s for the coordinates and velocity 
components of the particle.

• Since the drag force involves the fluid 
velocity at the location of the particle, it is 
necessary to interpolate the fluid velocity on 
the closest grid points.
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Hermite Interpolation in 1D
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Accuracy

• The grid spacing is denoted by h on the 
previous slide. 

• The error involved in the interpolation of 
the function f is O(h4).

• Note that the interpolation reduces to the 
correct values for the function and its first 
derivatives at the ends of the grid interval.
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Aerosol Trajectories in a DNS of 
Turbulent Channel Flow

• The aerosols are randomly seeded initially.
• The channel flow is vertical so that gravity 

cannot directly cause deposition.
• As time proceeds, particles collect near the 

walls because of “turbophoresis”.
• In the near wall region, particles collect in 

“low speed streaks.”
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Turbulent Channel Flow
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Aerosol Particles Accumulate in 
Low Speed Streaks
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