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Definitions

• Direct Numerical Simulation (DNS): 
solution of the continuity and Navier-Stokes 
equation without modeling.

• Large Eddy Simulation (LES): approximate 
solution of the continuity and Navier-Stokes 
equation on a “coarse grid” with some 
modeling.
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Numerical Solution of PDE’s

• The solutions are computed at a discrete set 
of times with a “time step”. This is called 
“time discretization”. 

• The dependent variables are computed on 
“grid points” that are separated by a “grid 
space”. This is called “spatial 
discretization.”
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Example: Unsteady Thermal 
Conduction

• Governing equation:

where α is the thermal diffusivity
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Time Discretization
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Low Order Explicit Methods
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Euler forward

Adams - Bashforth
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Low Order Implicit Methods
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Euler backward

Crank - Nicolson
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Spatial Discretization: 1D 
Uniform Grid.
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Central Difference 
Approximation
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Discretized Equation
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“Tridiagonal” system of linear algebraic 
equations subject to boundary conditions at 
i=1 and i=N. Solve with Thomas algorithm.
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Numerical Stability

The tridiagonal system is implicit so 
it is stable for all values of the time 
step and grid spacing. The only 
restriction is accuracy. 
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Fluid Mechanics
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Navier-Stokes and 
continuity equations.
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Time Discretization

The time discretization is the same as 
for the 1-D temperature equation.
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Spatial Discretization (2D)

Structured grid Unstructured grid
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Structured 
Curvilinear 

Grid
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Structured Grids

• Each point can be labeled by a pair (2D) or 
a triplet (3D) of integers without ambiguity.

• Usually, structured grids are used with 
Cartesian or “body-fitted” curvilinear 
coordinate systems and the grid points lie 
on coordinate curves.
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Unstructured Grids

• Unstructured grids are usually labeled with 
a  global index for each “element” and a 
local coordinate for each grid point in the 
element.

• Typically, unstructured grids are used with 
finite element, boundary element, and 
spectral element methods and with “front-
tracking” methods for 2 phase flow.
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Fixed and Moving Grids

• Problems involving boundaries and 
interfaces that do not change with time are 
usually solved on fixed grids.

• Problems involving changing boundaries or 
interfaces (e.g., a spiraling bubble) can 
sometimes be done on a fixed grid, but it is 
often more convenient to use a moving grid.
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Methods for Single Phase DNS

• Finite difference
• Finite volume
• Spectral
• Finite element (boundary element, spectral 

element)
• Lattice Boltzmann
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Finite Difference Method (FDM)

• Easy to formulate discretized equations
• Algebraic convergence in space            
• Useful for complex geometries if a body-

fitted coordinate system can be found 
(axisymmetric geometry), otherwise 
“staircasing” and complex implementation 
of boundary conditions

)( phO
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Finite Volume Method (FVM)

• Based on more complicated integral 
formulation of governing equations than 
FDM.

• Conservation laws are satisfied exactly.
• Algebraic convergence.
• Useful for problems with body-fitted 

coordinate systems.
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Spectral Method

• Easy to formulate discretized equations.
• Exponential spatial convergence (less 

resolution is needed than for FDM or 
others).

• Limited to very simple geometries (periodic 
box, channel flow between infinite flat 
walls).



23

Finite Element Method (FEM)

• More complicated mathematically than the 
other methods – based on variational 
formulation. Complicated matrices must be 
formed.

• Capable of handling extremely complicated, 
time-dependent geometries and two-phase 
flow.

• Algebraic convergence.
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Lattice Boltzmann Method (LBM)

• New (1988) approach using kinetic 
equations for a “lattice gas”.

• Extremely simple to program.
• Parallelizes very efficiently.
• Abstract.
• Difficult to use grid refinement.
• Method is under development.
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DNS of Two-Phase Flow

• Let us consider turbulent flows with solid or 
fluid particles in gases or liquids.

• For spherical particles that are smaller than 
the “Kolmogorov length”, there are 
approximate equations of motion for the 
particles.

• In the “dilute” regime, small suspended 
particles have no “feedback” on the flow.
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One-way Coupling Regime

• “One-way coupling” means that the 
suspended particles have no effect on the 
flow of the fluid.

• For aerosol particles, this condition may be 
expressed by requiring that the mass 
loading of the particles is very small 
compared to unity.
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Aerosol Mass Loading

g

p
lm ρ

ρ
φ=

where ϕ is the volume fraction,
ρp is the particle density,
ρg is the gas density.
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Particle Equation of Motion for 
Small Spherical Particles
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The force includes the drag, lift, 
gravitational, and Brownian forces.
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Particle position vector
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Particle Tracking

• We solve Newton’s law and the equation 
for the particle position vector as a set of 6 
(in 3D) ODE’s in time.

• Since the particles do not lie on grid points 
at any given time, it is necessary to use 
interpolation methods to compute the fluid 
velocity at the location of a particle.
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Interpolation Methods

• Trilinear (simple, but introduces 
discontinuities at grid “cell” boundaries.)

• Legendre (more accurate, although 
discontinuities still exist).

• Hermite (complicated, but no 
discontinuities).
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Next Class

• Spectral Method for DNS of turbulent 
flow in a periodic box.

• Tracking algorithm for small spherical 
particles in the above flow.


