
Spectral Simulation of 
Turbulence

and Tracking of Small Particles



Homogeneous Turbulence

• Statistical (time average) properties (RMS 
velocity fluctuations, dissipation rate) are 
independent of position.

• Homogeneous turbulence can be modeled with 
randomly stirred turbulence in a cubic periodic 
box.

• The turbulence in a periodic box is homogeneous, 
but not isotropic. (Diagonals and edges are 
different.)



Navier-Stokes Equation with 
Random Stirring Force
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Periodic Cubic Box
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The velocity is a periodic 
function of x, y, and z with 
period L.



Time Discretization – “Time 
Splitting”

• Each time step involves three sub-steps.
• First sub-step: the non-linear term is 

computed explicitly.
• Second sub-step: the pressure term is 

computed implicitly.
• Third sub-step: the viscous term is 

computed implicitly. 



Rotational Form of Navier-
Stokes Equation
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First Fractional Step
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p is the time step



Second Fractional Step
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Third Fractional Step
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Fourier Representation of the 
velocity and pressure fields

• We represent the velocity and pressure 
fields by three-dimensional Fourier series.

• Since Fourier series are periodic, the 
velocity and pressure fields are periodic.

• Calculations with the velocity and pressure 
are in “physical space”. Calculations with 
the Fourier coefficients are in “spectral 
space”



Three-Dimensional Fourier 
Series
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Fast Fourier Transform
• FFT = Fast Fourier Transform, Cooley & 

Tookey (1966)
• If a Fourier series involving N terms is 

computed directly, the number of operations 
is proportional to N2

• With the FFT algorithm, the number of 
operations is proportional to NN 2log



Procedure for Calculating the 
Velocity and Pressure

• The first fractional step is performed with 
the velocity field on a 3D grid with N3

points (physical space).
• The Fourier coefficients of the pressure are 

computed in spectral space.
• The Fourier coefficients of the velocity are 

computed in spectral space.



FFT’s Needed for Each Time 
Step

• At the end of a time step, we have the 
Fourier coefficients of the velocity. 
Therefore, we need a 3D FFT to compute 
the velocity and vorticity for the first 
fractional step of the next time step.

• After computing the first intermediate 
velocity field (the “~” field), do an inverse 
3D FFT to obtain the Fourier coefficients.



Pressure Step
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In spectral space:
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Viscous Step
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Channel Flow-Inhomogeneous 
Turbulence

• Pressure driven flow between two flat, 
infinite, parallel plates.

• Let us assume that the flow is in the x-
direction and that the walls are located at 
z=h and z=-h.

• Assume that the flow is periodic in x and y
and use Fourier series in those directions, 
but use a Chebyshev series in z.



Chebyshev Polynomials

• The convergence of Chebyshev series is 
independent of the boundary conditions, 
unlike Fourier series, because Chebyshev
polynomials are solutions of a singular 
Sturm-Liouville problem.

• We can still use FFT methods for 
Chebyshev series.



Chebyshev Polynomials
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Spectral Representation for 
Channel Flow
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Tracking of Small Particles

• Low concentrations of small particles have 
little effect on the underlying flow: “one-
way coupling”

• To track a particle, we need to know the 
forces acting on it.

• We solve 6 ODE’s in time for each 
particle’s coordinates and velocity 
components.



The particles may be 
seen on the left and 
the magnitude of the 
fluid vorticity is 
shown on the right. 
The particles are 
centrifuged out of 
regions of high 
vorticity into regions 
of low vorticity.



Equation of Motion for Small, 
Spherical Particles

c
p

f Ca

g
dt
d

))()((

)(1

2

υρ
ρ

τ

τ

2
9

kuvv

=

−−−=



Cunningham Correction Factor

• The Cunningham factor, Cc, depends on the 
molecular mean-free path and the diameter 
of the particle

• Under normal conditions, the Cunningham 
factor is close to unity for aerosols that are 
larger than 1 micron.



Calculation of Aerosol 
Trajectories

• To compute the trajectory of an aerosol 
particle, we need to solve 6 simultaneous 
ODE’s for the coordinates and velocity 
components of the particle.

• Since the drag force involves the fluid 
velocity at the location of the particle, it is 
necessary to interpolate the fluid velocity on 
the closest grid points.



Hermite Interpolation in 1D
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Accuracy

• The grid spacing is denoted by h on the 
previous slide. 

• The error involved in the interpolation of 
the function f is O(h4).

• Note that the interpolation reduces to the 
correct values for the function and its first 
derivatives at the ends of the grid interval.



Two or Three-Dimensional 
Hermite Interpolation

• In 2D, one needs the values of the function, 
the first derivatives of the function, and the 
second mixed derivative of the function at 
the four neighboring points (16 numbers).

• In 3D, the third mixed derivative is used. A 
total of 64 numbers are needed.



Advantages of Hermite
Interpolation

• Hermite interpolation has the advantage that 
it avoids discontinuities as a particle crosses 
the (artificial) boundaries between grid 
cells.

• In two-dimensions, one needs to know the 
velocity components, their first derivatives, 
and their second mixed derivative at the 4 
closest grid points.
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