
 

Stability Analysis for Finite Amplitude Disturbances 
 
 Let v , p  be a basic motion of a viscous fluid in a bound region V .  Let  denote 
the surface boundary of .  The basic flow satisfies the Navier-Stokes equation and the 
continuity equation. In dimensionless form these are given as 
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Consider a disturbed motion , .  The disturbed motion must satisfy the same 
equations and boundary condition.  These are 
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The difference motion is defined as 
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Subtracting (1) from (3) and using (5), we find 
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Equation (6) is the governing equation for the finite amplitude disturbance. 
 

The stability may be analyzed by studying the dynamics of the kinetic energy of 
the difference motion, T .  That is, 
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where the integral is over the volume  unless stated otherwise. V
 
 Using (6), we find 
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With the help of vector identities and divergence theorem, the right hand side of (9) is 
simplified.  Using 
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and 
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The first term on the right hand side of (9) may be restated as 
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The second term on the right hand side of (9) becomes 
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The last two terms in (9) also vanish identically. That is, 
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Using (12) – (15), equation (9) may be restated as 
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Employing the Korn inequality, 
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where  is a number depending on the geometry (for spheres N 80=N ) equation (16) 
becomes 
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Here, λ  is the maximum eigenvalue of ( v∇− ) or ( d− ) in time period 0 to t.  In deriving 
(18), we used the following inequality: 
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From (18), it follows that if it follows that if 
λ

≤
NRe  then the kinetic energy of the 

difference motion decays to zero and the basic motion is stable. That is, from (18), we 
find 
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As , then  and  and  almost everywhere.  Based on these 
results, the following theorem regarding the stability of basic motion may be stated. 
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Theorem 
 
 If for a basic flow of a viscous incompressible fluid in a bounded region of space 

, V
λ

≤
NRe , then the basic flow is stable. 

 
Corollary 1 (Uniqueness of Unsteady Viscous Flows) 
 
 If v  and  are two unsteady flows of a viscous fluid in a bounded region of 
space  having the same velocity distribution at time 
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they must be identical if 
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Corollary 2 (Uniqueness of Steady Viscous Flows) 
 
 If v  and  are two steady flows of a viscous incompressible fluid in a bounded 
region  subject to the same boundary conditions, then the two motions must be 

identical if 
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