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Second Order Modeling of Turbulence 
 
 Roughly speaking, if turbulent is characterized by a single length and a single 
velocity scale, first order modeling (the mixing length and related models) is expected to 
give reasonable results. The mechanism of transport is superficially like that of 
turbulence, but the total amount of transport is reasonable estimated.  (This is because the 
constants in the model are calibrated against the data.) 
 
 First order modeling breaks down completely in many situations, when there are 
more than one length or velocity scales.  In these situations, the mixing length type 
models cannot predict the fluxes even approximately.  A typical example is the buoyancy 
driven surface mixing layer where heat flux can occur in the opposite direction of the 
temperature gradient. 
 
 Second order models are expected to work in the situations in which the first 
order models are not applicable. This expectation is due to the fact that many terms, 
which are responsible for various mechanisms are carried through. However, past 
experience shows that when the first order models work, the second order models do not 
give much better results. 
 
 
Two-Equation Turbulence Models 
 
 Typical examples where the multi-equation turbulence models are needed are 
shown in the figures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Multiple scales. 

Accelerated flows. 
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 In accordance with the Prandtl-Kolmogorov equation, 
 

 l2
1

T k=ν                 (1) 
 
where k  is the kinetic energy of turbulence and l  is the turbulence length scale. While 
the transport equation for k is well known, a transport equation for l  is needed.  Usually, 
a transport equation for a combination of k  and l  is formulated.  Let 
 
 nmkz l= .                (2) 
 
Different authors have used different choices for z that are listed in the table in the past. 
 
 

Table 1.  Commonly used choices for z. 
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For a thin shear layer, the k-equation is given as 
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with Tν  given is by (1). The general transport equation for z  is given as 
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where zσ , 1C , and 2C  are constants ( 1z ≈σ ). 
 
 From the data for decay of turbulence behind a grid, we know that k  decays as 

1x − .  Equations (3) and (4) become 
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Compatibility of Equations (5) and (6) implies that 
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The constant 1C  may be estimated from matching with limiting flow in the 

inertial sublayer near a wall.  That is, in the inertial layer, 
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where A  is a constant. 
 

Equations (3) and (4) may now be restated as 
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Using (8) and (9) in (12) and rearranging, we find 
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For the ε -equation, (
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m = , 1n −= ) equation (7) and (13) gives 
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Several z-equations are given in the following section. 
 
 
 
Final z-equations, Launder and Spalding (1972) 
 
 The following z-equations were suggested by Launder and Sparlding (1972): 
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Here 1k =σ , 1k =σ l , and 09.0cD = . 
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where, 9.0k =σ , 9.0w =σ , and 09.0cD = . 
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ε -Equation 
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where 1k =σ , 3.1=σε , and 09.0cD = . 
 
 
Boundary Conditions 
 
 The appropriate boundary conditions are discussed in this section. 
 
At Plane or Axis of Symmetry 
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At Free Surface 
 
 The limiting forms of equations (3) and (4) imply that 
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The ε−k  Model 
 
 As noted before, ε  is a special form of the z-function and the equation for ε  can 
be obtained accordingly.  Nevertheless, it is instructive to provide a direct derivation for 
the ε -equation three-dimensional flows. 
 
 The exact k-equation is given as 
 

 k
x
U

uu
P

uu
2
1

u
xdt

dk 2

j

i
jijji

i

∇ν+ε−
∂
∂′′−




















ρ
′

+′′′
∂
∂

−= .        (24) 

 
The exact equation for the mean-square flow fluctuation vorticity is given as 
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where the viscous diffusion is neglected. 
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Recalling that 
 

iiω′ω′ν=ε ,              (30) 
 
equation (25) (when multiplied by ν2 ) is an exact transport equation for ε . Introducing 
the following closure assumptions: 
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The constants are given as 
 
 09.0c =µ  
 
 45.1c 1 =ε  
 
 9.1c 2 =ε  
 
 1k =σ  
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Note that the Reynolds and continuity equation are given as 
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 Equations (29) and (34) - (36) together with Tν  given by (27) form a system of 
six equations for determining the six unknowns iU , P , k , and ε . 
 
 
Boundary Conditions Near a Wall 
 
 
             P 
 
 
 
 
 
 
 
The velocity boundary condition is given as 
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where 0.9E =  for a smooth wall. Here Pk  is supposed to be known by solving the k-
equation. Integrating the k-equation across the grid point, the following assumption is 
needed: 
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Schematics of a grid point near a wall. 
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Low Reynolds Number Models  
 
(Jones and Launder (1973), Int. J. Heat Mass Transfer 16, 1119.) 
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Kolmogorov Model 
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where A , A′ , and A ′′  are constants and W  is the characteristic vorticity. 
 
 
Saffman Model 
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where α′ , β′ , α ′′ , A , A′ , A ′′ , and η  are constants. 
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Boundary  Conditions near a  Solid Wall 
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Stress Transport Model for a Two-Dimensional Boundary Layer Flow 
 
 The exact equation for vu ′′  in a boundary layer flow is given as 
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Modeling (Hanjalic 1970) 
 

Production is approximately equal to 
y
U

k
∂
∂

. 

 

 Diffusion is approximately equal to 






 ′′
∂
∂

σ
ν

∂
∂

vu
yy T

T . 

 
 Dissipation is approximately equal to 0 . 

 

Pressure-strain is approximately equal to vuk 2
1

′′
l

. 

 
The Closed transport equation becomes 

 

 















′′+

∂
∂

−







′′

∂
∂

σ
ν

∂
∂

=′′ τ vu
k

y
U

kcvu
yy

vu
Dt
D 2

1

z

T

l
, 

 

where 9.0=στ , 8.2c =τ , and k  and l  (
l

2
3

D
kC=ε ) are found from their 

transport equations. 
 

Harlow and Daly [(1970) Phys. Fluids 13, 2634] obtained five equations for vu ′′ , 2u′ , 
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Jones-Launder Model 
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Algebraic Stress Transport Model (Rodi, ZAMM 56 (1976)) 
 
 A simplified stress transport model is given as  
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(1), we find the transport equation for k : 
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 where 
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 is the diffusion, and 
l
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U

uuP k
k ∂

∂′′=  is the  

 
production. 

 
Radi (1976) assumed that 
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k
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 −

′′
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Using (3) in (1) and rearranging, the result is 
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1
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This is an algebraic expression for jiuu ′′ . 
 
 For simple shear flows, it may be shown that equation (4) reduces to the 
Kolmogorov-Prandtl hypothesis with 
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