1. Consider a velocity field with

$$
\begin{aligned}
& \mathrm{u}=\mathrm{y}+\mathrm{t} \\
& \mathrm{v}=\sin (\mathrm{t})
\end{aligned}
$$

(a) Find the streamline that paths through point $(1,1)$ at different times.
(b) Determine the path line of a particle which was at $(1,1)$ at time $\mathrm{t}=0$.
(c) Find the streak line of point $(1,1)$ at time 1.
(d) Evaluate the deformation rate tensor and vorticity vector in this flow field.

2 Consider an unsteady viscous liquid flowing between two parallel plates as shown. The plates are stationary. The equation of motion of fluid velocity $u(y, t)$ is given as

$$
\frac{\partial u}{\partial t}=v \frac{\partial^{2} u}{\partial y^{2}}+\sin \pi y
$$

Assuming unsteady fully developed flow starting from rest, evaluate the velocity $\mathrm{u}(\mathrm{y}, \mathrm{t})$.

