

Review of Set Theory and Probability Space

i) Set

A set is a collection of objects. These objects are called elements of the set.

ii) Subset

A subset b of a set a is a set whose elements are also elements of a.

iii) Space

"Space" S is the largest set and all other sets under consideration are subsets of S.

iv) Null Set

O is an empty or null set. O contains no elements.

Set Operations

A set b is a subset of a, $b \subset a$, or the set a contains b, $a \supset b$, if all elements of b are also elements of a. That is,

If $b \subset a$, and $c \subset b$, then $c \subset a$.

The following relationship holds:

 $a \subset a$, $0 \subset a$, $a \subset S$

i) Equality

a = b iff $a \subset b$ and $b \subset a$.

Examples of subsets.

ii)Union (Sum)

The union of two sets a and b is a set consisting of all elements of a or of b or of both. The union operation satisfies the following properties:

An example of union of sets a and b.

$$a \cup S = S$$

$$(a \cup b) \cup c = a \cup (b \cup c) = a \cup b \cup c$$
, (Associative).

iii) Intersection (Product)

The intersection of two sets a and b is a set consisting of all elements that are common to the sets a and b. The intersection operation satisfies the following properties:

Mutually Exclusive Sets

Two sets a and b are called mutually exclusive or disjoint if they have no common elements, i.e.

 $a \cap b = 0$.

The sets a_1, a_2, \ldots are called mutually exclusive if $a_i \cap a_j = 0$ for every $i \neq j$.

Complements

The complement \overline{a} of a set a is defined as a set consisting of all elements of S that are not in a. Complement sets satisfy the following properties:

$$a\cup \overline{a}=S$$
,

s s

An example of mutually exclusive sets.

An example of complemets.

$$a \cap \overline{a} = 0,$$

$$\overline{0} = S, \qquad \overline{S} = 0,$$

If $b \subset a, \qquad \overline{b} \supset \overline{a}.$

De Morgan Law

$$\overline{a \cup b} = \overline{a} \cap \overline{b}, \qquad \overline{a \cap b} = \overline{a} \cup \overline{b}.$$

Difference of Two Sets

The difference set of a-b is a set consisting of elements of a that are not in b. The difference satisfy the following properties:

$$a - b = a \cap \overline{b} = a - a \cap b$$
$$a \cup a - a = 0,$$
$$(a - a) \cup a = a,$$
$$\overline{a} = S - a,$$
$$a = (a - b) \cup (a \cap b).$$

An example of difference of two sets.

Probability space

i) Random Experiment \Im

By an experiment \Im , we mean a (set) space S of outcomes ξ . Elements of S are *outcomes* or *elementary events*. S is a probability (sample) space. Subsets of S are called *events*. Space S is the *sure (certain) event*. Empty set 0 is the *impossible event*.

ii) Mutually Exclusive Events

Two events a and b are mutually exclusive if $a \cap b = 0$.

iii) Axioms of Probability

To each event *a* a measure (number) P(a) which is called the *probability* of event *a* is assigned. P(a) is subjected to the following three axioms:

1.
$$P(a) \ge 0$$
,

2.
$$P(S) = 1$$
,
3. If $a \cap b = 0$, then $P(a \cup b) = P(a) + P(b)$.

Corollaries

$$P(0) = 0,$$

$$P(a) = 1 - P(\overline{a}) \le 1.$$

If $a \cap b \ne 0$, then $P(a \cup b) = P(a) + P(b) - P(a \cap b).$
If $b \subset a$, $P(a) = P(b) + P(a \cap \overline{b}) \ge P(b).$

Field

Def: A field F is a nonempty class of sets such that

- 1. If $a \in F$, then $\overline{a} \in F$;
- 2. If $a \in F$ and $b \in F$, then $a \cup b \in F$.

Corollaries

If $a \in F$ and $b \in F$, then $a \cap b \in F$ and $a - b \in F$.

Also, $0 \in F$ and $S \in F$.

Borel Field

Def: If a field has the property that if the sets $a_1, a_2, ..., a_n, ...$ belong to it, then so does the set $a_1 \cup a_2 \cup ... \cup a_n \cup ...$, then the field is called a Borel field. Note that the class of all subsets of S is Borel field.

Probability Experiment 3

A probability experiment is:

- 1. A set S of outcomes ξ ; this set is called space or sure (certain) event.
- 2. A Borel field F consisting of certain subsets of S called events.
- 3. A measure (number) P(a) assigned to every event a; This measure is called probability of event a, it satisfies axioms 1-3.

It is common to use the following notation for probability experiments:

 \Im : (S, F, P) identifies a probability experiment with space of outcomes *S*, and the associated field *F* with *P*(*a*) for all outcomes assigned.

Example: Probability experiment of tossing a coin, \Im : (*S*, *F*, *P*). Here the space is

 $S = \{h, t\}.$

The events are:

$$F: 0, \{h\}, \{t\}, \{h, t\},$$

with the probability of the events given as:

$$P(h) = p, P\{t\} = q, p+q=1.$$