Review of Set Theory and Probability Space

i) Set

A set is a collection of objects. These objects are called elements of the set.

ii) Subset

A subset b of a set a is a set whose elements are also elements of a.
iii) Space
"Space" S is the largest set and all other sets under consideration are subsets of S.
iv) Null Set
O is an empty or null set. O contains no elements.

Set Operations

A set b is a subset of $a, b \subset a$, or the set a contains $b, a \supset b$, if all elements of b are also elements of a. That is,

If $b \subset a$, and $c \subset b$, then $c \subset a$.
The following relationship holds:

$$
a \subset a, 0 \subset a, a \subset S
$$

i) Equality

$$
a=b \text { iff } a \subset b \text { and } b \subset a
$$

Examples of subsets.

ii)Union (Sum)

The union of two sets a and b is a set consisting of all elements of a or of b or of both. The union operation satisfies the following properties:

$$
\begin{aligned}
& a \cup b=b \cup a, \\
& a \cup a=a, \\
& a \cup 0=a,
\end{aligned}
$$

An example of union of sets a and b.

$$
\begin{aligned}
& a \cup S=S \\
& (a \cup b) \cup c=a \cup(b \cup c)=a \cup b \cup c, \quad \text { (Associative). }
\end{aligned}
$$

iii) Intersection (Product)

The intersection of two sets a and b is a set consisting of all elements that are common to the sets a and b. The intersection operation satisfies the following properties:

$a \cap S=a$,
$(\mathrm{a} \cap \mathrm{b}) \cap \mathrm{c}=\mathrm{a} \cap(\mathrm{b} \cap \mathrm{c})=\mathrm{a} \cap \mathrm{b} \cap \mathrm{c}, \quad$ (Associative),
If $b \subset a, \quad b \cap a=b$,
Also $\quad a \cap(b \cup c)=(a \cap b) \cup(a \cap c), \quad$ (Distributive).

Mutually Exclusive Sets

Two sets a and b are called mutually exclusive or disjoint if they have no common elements, i.e.

$$
a \cap b=0 .
$$

The sets a_{1}, a_{2}, \ldots are called mutually An example of mutually exclusive sets. exclusive if $a_{i} \cap a_{j}=0$ for every $i \neq j$.

Complements

The complement \bar{a} of a set a is defined as a set consisting of all elements of S that are not in a. Complement sets satisfy the following properties:

$$
a \cup \bar{a}=S,
$$

An example of complemets.

$$
a \cap \bar{a}=0
$$

$$
\overline{0}=S, \quad \bar{S}=0
$$

If $b \subset a, \quad \bar{b} \supset \bar{a}$.

De Morgan Law

$$
\overline{a \cup b}=\bar{a} \cap \bar{b}, \quad \overline{a \cap b}=\bar{a} \cup \bar{b}
$$

Difference of Two Sets

The difference set of $a-b$ is a set consisting of elements of a that are not in b. The difference satisfy the following properties:

$$
\begin{aligned}
& a-b=a \cap \bar{b}=a-a \cap b, \\
& a \cup a-a=0, \\
& (a-a) \cup a=a, \\
& \bar{a}=S-a, \\
& a=(a-b) \cup(a \cap b) .
\end{aligned}
$$

An example of difference of two sets.

Probability space

i) Random Experiment \mathfrak{I}

By an experiment \mathfrak{J}, we mean a (set) space S of outcomes ξ. Elements of S are outcomes or elementary events. S is a probability (sample) space. Subsets of S are called events. Space S is the sure (certain) event. Empty set 0 is the impossible event.

ii) Mutually Exclusive Events

Two events a and b are mutually exclusive if $a \cap b=0$.

iii) Axioms of Probability

To each event a a measure (number) $P(a)$ which is called the probability of event a is assigned. $P(a)$ is subjected to the following three axioms:

1. $P(a) \geq 0$,
2. $P(S)=1$,
3. If $a \cap b=0$, then $P(a \cup b)=P(a)+P(b)$.

Corollaries

$$
\begin{aligned}
& P(0)=0, \\
& P(a)=1-P(\bar{a}) \leq 1 .
\end{aligned}
$$

$$
\text { If } a \cap b \neq 0 \text {, then } P(a \cup b)=P(a)+P(b)-P(a \cap b) \text {. }
$$

$$
\text { If } b \subset a, \quad P(a)=P(b)+P(a \cap \bar{b}) \geq P(b)
$$

Field

Def: A field F is a nonempty class of sets such that

1. If $a \in F$, then $\bar{a} \in F$;
2. If $a \in F$ and $b \in F$, then $a \cup b \in F$.

Corollaries

If $a \in F$ and $b \in F$, then $a \cap b \in F$ and $a-b \in F$.
Also, $0 \in F$ and $S \in F$.

Borel Field

Def: If a field has the property that if the sets $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ belong to it, then so does the set $a_{1} \cup a_{2} \cup \ldots \cup a_{n} \cup \ldots$, then the field is called a Borel field. Note that the class of all subsets of S is Borel field.

Probability Experiment \mathfrak{I}

A probability experiment is:

1. A set S of outcomes ξ; this set is called space or sure (certain) event.
2. A Borel field F consisting of certain subsets of S called events.
3. A measure (number) $P(a)$ assigned to every event a; This measure is called probability of event a, it satisfies axioms 1-3.

It is common to use the following notation for probability experiments:
$\mathfrak{J}:(S, F, P)$ identifies a probability experiment with space of outcomes S, and the associated field F with $P(a)$ for all outcomes assigned.

Example: Probability experiment of tossing a coin, $\mathfrak{I}:(S, F, P)$. Here the space is

$$
S=\{h, t\} .
$$

The events are:

$$
F: 0,\{h\},\{t\},\{h, t\},
$$

with the probability of the events given as:

$$
P(h)=p, P\{t\}=q, p+q=1 .
$$

