Repeated Trials (Bernoulli Trials)

Consider a series of independent experiments. Suppose that the probability of event a in each experiment is

$$
\begin{equation*}
P(a)=p . \tag{1}
\end{equation*}
$$

Let also

$$
\begin{equation*}
P(\bar{a})=q \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
p+q=1 \tag{3}
\end{equation*}
$$

The probability that event a occurs k times in a specific order in n trials is $p^{k} q^{n-k}$. The number of ways that a can occur k times in n trials is equal to $\binom{n}{k}$. Therefore, the probability that a occurs k times in n trials in any order is:

$$
\begin{equation*}
P_{n}(k)=\binom{n}{k} p^{k} q^{n-k} \tag{4}
\end{equation*}
$$

Figure 1 shows the variation of the probability as given by Equation (4).

Figure 1. Variation of repeated trial probability.

Most Likely Number of Success

The value of k for which $P_{n}(k)$ is maximum is referred to as the most likely number of success. It may be shown that

$$
k_{\max }=\left\{\begin{array}{cc}
k_{1}, \quad k_{1}=\text { Greatest Integer } \leq(n+1) P & \text { if }(n+1) P \neq \text { Integer } \tag{5}\\
k_{1} \text { and } k_{1}-1, & k_{1}=(n+1) P
\end{array} \quad \text { if }(n+1) P=\text { Integer }\right\} .
$$

Probability that event a occurs k times with $k_{1} \leq k \leq k_{2}$ is given as

$$
\begin{equation*}
P\left(k_{1} \leq k \leq k_{2}\right)=\sum_{k=k_{1}}^{k_{2}}\binom{n}{k} p^{k} q^{n-k} \tag{6}
\end{equation*}
$$

Asymptotic Theorems

When the number of trials is very large, approximate asymptotic expressions for the probability may be used.

DeMoivre-Laplace Theorem

Let n be a large number and $n p q \gg 1$. Then for values of k in the $\sqrt{n p q}$ neighborhood of its most likely value $n p$ (i.e. $|k-n p|$ of the order of $\sqrt{n p q}$) it may be shown that

$$
\begin{equation*}
P_{n}(k)=\binom{n}{k} p^{k} q^{n-k} \approx \frac{1}{\sqrt{2 \pi n p q}} e^{-\frac{(k-n p)^{2}}{2 n p q}} \tag{7}
\end{equation*}
$$

This approximation is known as the DeMoivre-Laplace theorem. The proof is based on Stirling formula

$$
\begin{equation*}
n!\approx n^{n} e^{-n} \sqrt{2 \pi n} \quad \text { as } \quad n \rightarrow \infty \tag{8}
\end{equation*}
$$

Approximate Evaluation of $P_{n}\left(k_{1} \leq k \leq k_{2}\right)$
In a similar limiting case, it follows that

$$
\begin{equation*}
P_{n}\left(k_{1} \leq k \leq k_{2}\right)=\sum_{k=k_{1}}^{k_{2}}\binom{n}{k} p^{k} q^{n-k} \approx \frac{1}{\sqrt{2 \pi n p q}} \sum_{k=k_{1}}^{k_{2}} e^{-\frac{(k-n p)^{2}}{2 n p q}}, \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
P_{n}\left(k_{1} \leq k \leq k_{2}\right) \approx \frac{1}{\sqrt{2 \pi n p q}} \int_{k_{1}}^{k_{2}} e^{-\frac{(x-n p)^{2}}{2 n p q}} d x . \tag{10}
\end{equation*}
$$

Introducing the error function

$$
\begin{equation*}
\operatorname{erfx}=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-\frac{y^{2}}{2}} d y, \quad \operatorname{erf}(\infty)=\frac{1}{2}, \quad-\operatorname{erf}(-x)=\operatorname{erf}(x) \tag{11}
\end{equation*}
$$

we find

$$
\begin{equation*}
P_{n}\left(k_{1} \leq k \leq k_{2}\right) \approx \operatorname{erf} \frac{k_{2}-n p}{\sqrt{n p q}}-\operatorname{erf} \frac{k_{1}-n p}{\sqrt{n p q}} . \tag{12}
\end{equation*}
$$

Gaussian Functions

The Gaussian or normal function is defined as

$$
\begin{equation*}
g(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}, \quad g(-x)=g(x) \tag{13}
\end{equation*}
$$

Integral of $g(y)$ is given as

$$
\begin{equation*}
G(x)=\int_{-\infty}^{x} g(y) d y=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{y^{2}}{2}} d y, \quad G(\infty)=1 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{erf}(x)=G(x)-\frac{1}{2}, \quad G(-x)=1-G(x) \tag{15}
\end{equation*}
$$

Using g and G, it follows that

$$
\begin{align*}
& P_{n}(k)=\binom{n}{k} p^{k} q^{n-k} \approx \frac{1}{\sqrt{n p q}} g\left(\frac{k-n p}{\sqrt{n p q}}\right), \tag{16}\\
& P_{n}\left(k_{1} \leq k \leq k_{2}\right)=G\left(\frac{k_{2}-n p}{\sqrt{n p q}}\right)-G\left(\frac{k_{1}-n p}{\sqrt{n p q}}\right) . \tag{17}
\end{align*}
$$

Generalized Bernoulli Trials

Assume that in the probability experiment \mathfrak{J} the events $a_{1}, a_{2}, \ldots a_{r}$ are mutually exclusive (i.e. $a_{i} \cap a_{j}=0$ for $i \neq j$) and $a_{1} \cup a_{2} \cup \ldots \cup a_{r}=S$. Let $P\left(a_{1}\right)=P_{1}, P\left(a_{2}\right)=P_{2}, \ldots, P\left(a_{r}\right)=P_{r}$ with $P_{1}+P_{2}+\ldots+P_{r}=1$. The probability that event a_{1} occurs k_{1} times, a_{2} occurs k_{2} times, \ldots, a_{r} occurs k_{r} times in n independent trials with $k_{1}+k_{2}+\ldots+k_{r}=n$ is given as

$$
\begin{equation*}
P_{n}\left(k_{1}, k_{2}, \ldots, k_{r}\right)=\frac{n!}{k_{1}!k_{2}!\ldots k_{r}!} P_{1}^{k_{1}} P_{2}^{k_{2}} \ldots P_{r}^{k_{r}} . \tag{18}
\end{equation*}
$$

For large n, if k_{i} is in the \sqrt{n} vicinity of $n P_{i}$, the Demoivre-Laplace theorem implies that

$$
\begin{equation*}
P_{n}\left(k_{1}, k_{2}, \ldots, k_{r}\right) \approx \frac{\exp \left\{-\frac{1}{2}\left[\frac{\left(k_{1}-n P_{1}\right)^{2}}{n P_{1}}+\ldots+\frac{\left(k_{r}-n P_{r}\right)^{2}}{n P_{r}}\right]\right\}}{\sqrt{(2 \pi n)^{r-1} P_{1} \ldots P_{r}}} \tag{19}
\end{equation*}
$$

Poisson Theorem

For a Bernoulli trial, suppose that n is very large but P is very small and such that $n P=a$ of the order of one. It then follows that as $n \rightarrow \infty, n P \rightarrow a$,

$$
\begin{equation*}
P_{n}(k)=\binom{n}{k} P^{k} q^{n-k} \approx e^{-n P} \frac{(n P)^{k}}{k!}=e^{-a} \frac{a^{k}}{k!} . \tag{20}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
P_{n}\left(k_{1} \leq k \leq k_{2}\right) \approx e^{-n P} \sum_{k=k_{1}}^{k_{2}} \frac{(n P)^{k}}{k!} . \tag{21}
\end{equation*}
$$

Random Poisson Points

We place at random n points in the interval $(0, T)$. Let $t_{2}-t_{1}=t_{a}$. The probability of finding k points in t_{a} is given as

$$
\begin{equation*}
P\left(k \text { POINTS IN } t_{a}\right)=\binom{n}{k} P^{k} q^{n-k}, \quad P=\frac{t_{a}}{T} . \tag{22}
\end{equation*}
$$

Suppose $n \gg 1$ and $t_{a} \ll T$ such that $n_{P}=\frac{n t_{a}}{T}$ is finite. From the Poisson Theorem we find

$$
\begin{equation*}
P\left(k \text { Point } s \text { in } t_{a}\right) \approx e^{-\frac{n t_{A}}{T}} \frac{\left(\frac{n t_{a}}{T}\right)^{k}}{k!} \text { as } n \rightarrow \infty, T \rightarrow \infty \tag{23}
\end{equation*}
$$

Let $\lambda=\frac{n}{T}$. Then,

$$
\begin{equation*}
P\left(k \text { Point in } t_{a}\right) \approx e^{-\lambda t_{a}} \frac{\left(\lambda t_{a}\right)^{k}}{k!} . \tag{24}
\end{equation*}
$$

Useful Formula

$$
\begin{aligned}
& (x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n} y^{n-k}, \quad 2^{n}=\sum_{k=0}^{n}\binom{n}{k}, \quad \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0 \\
& \left(x_{1}+x_{2}+\ldots+x_{n}\right)^{n}=\sum_{k_{1}, k_{2}, \ldots, k_{r}>0}\binom{n}{k_{1}, k_{2}, \ldots, k_{r}} x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{r}^{k_{r}} \\
& \sum_{k_{1}, k_{2}, \ldots, k_{r}}\binom{n}{k_{1}, k_{2}, \ldots, k_{r}}=r^{n} \\
& e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}, \quad e=\sum_{k=0}^{\infty} \frac{1}{k!} \\
& \frac{1}{1+x}=1-x+x^{2}-x^{3} \ldots=\sum_{k=1}^{\infty}(-1)^{k-1} x^{k-1} \\
& \ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\ldots=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{x^{k}}{k} \\
& \ln \frac{1+x}{1-x}=2 \sum_{k=1}^{\infty} \frac{1}{2 k-1} x^{2 k-1}
\end{aligned}
$$

$$
\ln (1-x)=-\sum_{k=1}^{\infty} \frac{x^{k}}{k}
$$

$$
\begin{aligned}
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!} \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}
\end{aligned}
$$

$$
\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots=\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!}
$$

$$
\cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots=\sum_{k=0}^{\infty} \frac{x^{2 k}}{(2 k)!}
$$

$$
\operatorname{Arctg} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7} \ldots=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}
$$

$$
\operatorname{Arcth} x=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7} \ldots=\sum_{k=0}^{\infty} \frac{x^{2 k+1}}{2 k+1}
$$

