

Repeated Trials (Bernoulli Trials)

Consider a series of independent experiments. Suppose that the probability of event a in each experiment is

$$P(a) = p \,. \tag{1}$$

Let also

$$P(\bar{a}) = q \tag{2}$$

with

$$p+q=1. (3)$$

The probability that event *a* occurs *k* times in a specific order in *n* trials is $p^k q^{n-k}$. The number of ways that *a* can occur *k* times in *n* trials is equal to $\binom{n}{k}$. Therefore, the probability that *a* occurs *k* times in *n* trials in any order is:

$$P_n(k) = \binom{n}{k} p^k q^{n-k}.$$
(4)

Figure 1 shows the variation of the probability as given by Equation (4).

Figure 1. Variation of repeated trial probability.

Most Likely Number of Success

The value of k for which $P_n(k)$ is maximum is referred to as the most likely number of success. It may be shown that

$$k_{max} = \begin{cases} k_1, & k_1 = Greatest \ Integer \le (n+1)P & if \ (n+1)P \ne Integer \\ k_1 \ and \ k_1 - 1, & k_1 = (n+1)P & if \ (n+1)P = Integer \end{cases}.$$
(5)

Probability that event *a* occurs *k* times with $k_1 \le k \le k_2$ is given as

$$P(k_1 \le k \le k_2) = \sum_{k=k_1}^{k_2} {n \choose k} p^k q^{n-k} .$$
(6)

Asymptotic Theorems

When the number of trials is very large, approximate asymptotic expressions for the probability may be used.

DeMoivre-Laplace Theorem

Let *n* be a large number and $npq \gg 1$. Then for values of *k* in the \sqrt{npq} neighborhood of its most likely value np (i.e. |k - np| of the order of \sqrt{npq}) it may be shown that

$$P_{n}(k) = \binom{n}{k} p^{k} q^{n-k} \approx \frac{1}{\sqrt{2\pi n p q}} e^{-\frac{(k-np)^{2}}{2n p q}}.$$
(7)

This approximation is known as the DeMoivre-Laplace theorem. The proof is based on Stirling formula

 $n! \approx n^n e^{-n} \sqrt{2\pi n}$ as $n \to \infty$. (8)

Approximate Evaluation of P_n ($k_1 \le k \le k_2$)

In a similar limiting case, it follows that

$$P_n(k_1 \le k \le k_2) = \sum_{k=k_1}^{k_2} \binom{n}{k} p^k q^{n-k} \approx \frac{1}{\sqrt{2\pi n p q}} \sum_{k=k_1}^{k_2} e^{-\frac{(k-np)^2}{2npq}}, \qquad (9)$$

Clarkson University

or

$$P_n(k_1 \le k \le k_2) \approx \frac{1}{\sqrt{2\pi n p q}} \int_{k_1}^{k_2} e^{-\frac{(x-np)^2}{2npq}} dx.$$
(10)

Introducing the error function

$$erfx = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{y^2}{2}} dy, \qquad erf(\infty) = \frac{1}{2}, \quad -erf(-x) = erf(x),$$
(11)

we find

$$P_n(k_1 \le k \le k_2) \approx erf \, \frac{k_2 - np}{\sqrt{npq}} - erf \, \frac{k_1 - np}{\sqrt{npq}}.$$
(12)

Gaussian Functions

The Gaussian or normal function is defined as

$$g(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \qquad g(-x) = g(x).$$
 (13)

Integral of g(y) is given as

$$G(x) = \int_{-\infty}^{x} g(y) dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{y^{2}}{2}} dy, \qquad G(\infty) = 1, \qquad (14)$$

and

$$erf(x) = G(x) - \frac{1}{2}, \quad G(-x) = 1 - G(x).$$
 (15)

Using g and G, it follows that

$$P_n(k) = \binom{n}{k} p^k q^{n-k} \approx \frac{1}{\sqrt{npq}} g\left(\frac{k-np}{\sqrt{npq}}\right), \tag{16}$$

$$P_n(k_1 \le k \le k_2) = G\left(\frac{k_2 - np}{\sqrt{npq}}\right) - G\left(\frac{k_1 - np}{\sqrt{npq}}\right).$$
(17)

Generalized Bernoulli Trials

Assume that in the probability experiment \Im the events a_1, a_2, \ldots, a_r are mutually exclusive (i.e. $a_i \cap a_j = 0$ for $i \neq j$) and $a_1 \cup a_2 \cup \ldots \cup a_r = S$. Let $P(a_1) = P_1, P(a_2) = P_2, \ldots, P(a_r) = P_r$ with $P_1 + P_2 + \ldots + P_r = 1$. The probability that event a_1 occurs k_1 times, a_2 occurs k_2 times, \ldots, a_r occurs k_r times in n independent trials with $k_1 + k_2 + \ldots + k_r = n$ is given as

$$P_n(k_1, k_2, \dots, k_r) = \frac{n!}{k_1! k_2! \dots k_r!} P_1^{k_1} P_2^{k_2} \dots P_r^{k_r}.$$
(18)

For large *n*, if k_i is in the \sqrt{n} vicinity of nP_i , the Demoivre-Laplace theorem implies that

$$P_n(k_1, k_2, ..., k_r) \approx \frac{\exp\left\{-\frac{1}{2}\left[\frac{(k_1 - nP_1)^2}{nP_1} + ... + \frac{(k_r - nP_r)^2}{nP_r}\right]\right\}}{\sqrt{(2\pi n)^{r-1}P_1...P_r}}.$$
(19)

Poisson Theorem

For a Bernoulli trial, suppose that *n* is very large but *P* is very small and such that nP = a of the order of one. It then follows that as $n \to \infty$, $nP \to a$,

$$P_{n}(k) = \binom{n}{k} P^{k} q^{n-k} \approx e^{-nP} \frac{(nP)^{k}}{k!} = e^{-a} \frac{a^{k}}{k!}.$$
(20)

Furthermore,

$$P_n(k_1 \le k \le k_2) \approx e^{-nP} \sum_{k=k_1}^{k_2} \frac{(nP)^k}{k!} \,. \tag{21}$$

Random Poisson Points

We place at random *n* points in the interval (0,T). Let $t_2 - t_1 = t_a$. The probability of finding *k* points in t_a is given as

$$P(k \text{ POINTS IN } t_a) = \binom{n}{k} P^k q^{n-k}, \quad P = \frac{t_a}{T}.$$
(22)

Suppose $n \gg 1$ and $t_a \ll T$ such that $n_p = \frac{nt_a}{T}$ is finite. From the Poisson Theorem we find

$$P(k \text{ Point s in } t_a) \approx e^{-\frac{nt_A}{T}} \frac{\left(\frac{nt_a}{T}\right)^k}{k!} \text{ as } n \to \infty, T \to \infty.$$
(23)

Let $\lambda = \frac{n}{T}$. Then,

$$P(k \text{ Point in } t_a) \approx e^{-\lambda t_a} \frac{(\lambda t_a)^k}{k!}.$$
(24)

Useful Formula

$$(x+y)^{n} = \sum_{k=0}^{n} {n \choose k} x^{n} y^{n-k}, \qquad 2^{n} = \sum_{k=0}^{n} {n \choose k}, \qquad \sum_{k=0}^{n} {(-1)^{k} \binom{n}{k}} = 0$$

$$(x_{1}+x_{2}+...+x_{n})^{n} = \sum_{k_{1},k_{2},...,k_{r}>0} {n \choose k_{1},k_{2},...,k_{r}} x_{1}^{k_{1}} x_{2}^{k_{2}}...x_{r}^{k_{r}}$$

$$\sum_{k_{1},k_{2},...,k_{r}} {n \choose k_{1},k_{2},...,k_{r}} = r^{n}$$

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}, \qquad e = \sum_{k=0}^{\infty} \frac{1}{k!}$$

$$\frac{1}{1+x} = 1-x+x^{2}-x^{3}... = \sum_{k=1}^{\infty} {(-1)^{k-1}x^{k-1}}$$

$$\ln(1+x) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} - \frac{1}{4}x^{4} + ... = \sum_{k=1}^{\infty} {(-1)^{k+1}\frac{x^{k}}{k}}$$

$$\ln\frac{1+x}{1-x} = 2\sum_{k=1}^{\infty} \frac{1}{2k-1}x^{2k-1}$$

$$\ln(1-x) = -\sum_{k=1}^{\infty} \frac{x^{k}}{k}$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!}$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k}}{(2k)!}$$

$$\sinh x = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$$

$$\cosh x = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$$

$$Arctgx = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} \dots = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{2k+1}$$

$$Arcthx = x + \frac{x^{3}}{3} + \frac{x^{5}}{5} + \frac{x^{7}}{7} \dots = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{2k+1}$$