Conditional Distributions and Densities

Definition: The conditional distribution of $X(\xi)$ given (event) m is defined as

$$
F_{X}(x \mid m)=P\{X(\xi) \leq x \mid m\}=\frac{P\{(X \leq x) \cap m\}}{P\{m\}} .
$$

Note that $((X(\xi) \leq x) \cap m)$ is the event consisting of all outcomes ξ such that

$$
X(\xi) \leq x \text { and } \xi \in m
$$

The properties of the conditional distribution $F_{x}(x \mid m)$ are similar to $F_{X}(x)$. For example,

$$
F_{X}(\infty \mid m)=1, F_{X}(-\infty \mid m)=0, P\left\{x_{1}<x \leq x_{2} \mid m\right\}=F_{X}\left(x_{2} \mid m\right)-F_{X}\left(x_{1} \mid m\right) .
$$

Definition: The conditional density of $X(\xi)$ given m is defined as

$$
f_{X}(x \mid m)=\frac{d F_{X}(x \mid m)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{P\{x \leq X \leq x+\Delta x \mid m\}}{\Delta x} .
$$

$f_{X}(x \mid m)$ is non-negative and

$$
\int_{-\infty}^{+\infty} f(x \mid m) d x=1
$$

Expected Value and Moments

The expected value of a random variable $X(\xi)$ is defined as

$$
E\{X\}=\int_{-\infty}^{+\infty} x f_{X}(x) d x=<X>.
$$

For a discrete random variable with $f_{X}(x)=\sum_{n} P_{n} \delta\left(x-x_{n}\right)$

$$
E\{X\} \approx \frac{x_{1}+x_{2}+\ldots+x_{n}}{n} .
$$

Lebesgue Integral in sample space (Ensemble Average)

The mean of $X(\xi)$ may be written in terms of a Lebesgue integral in the sample space. i.e.,

$$
E\{X\}=\int_{-\infty}^{+\infty} x f(x) d x=\sum_{i=-\infty}^{+\infty} x_{i} f\left(x_{i}\right) \Delta x_{i}=\sum_{i=-\infty}^{+\infty} x_{i} P\left\{x_{i}<X \leq x_{i}+\Delta x_{i}\right\}=\int_{S} X d P
$$

Expected Value of $\mathbf{g}(\mathbf{X})$

Definition: The expected values of a function of a random variable is defined as

$$
E\{g(X)\}=\int_{-\infty}^{+\infty} g(x) f_{X}(x) d x
$$

When X is a discrete random variable,

$$
E\{g(x)\}=\sum_{i} P_{i} g\left(x_{i}\right)
$$

Expected value is a linear operator. i.e.,

$$
E\left\{\sum_{j=1}^{n} g_{j}(X)\right\}=\sum_{j=1}^{n} E\left\{g_{j}(x)\right\} .
$$

Variance (σ^{2})

Definition: The variance of a random variable is defined as

$$
\sigma^{2}=E\left\{x^{2}\right\}-\eta^{2}
$$

Here, σ, is referred to as the standard deviation.

Moments

Definition: $k t h$ moment of a random variable, m_{k}, is defined as

$$
m_{k}=E\left\{x^{k}\right\}=\int_{-\infty}^{+\infty} x^{k} f_{X}(x) d x, m_{0}=1, m_{1}=\eta
$$

Definition: k th central moment of a random variable, μ_{k}, is defined as

$$
\begin{aligned}
& \mu_{k}=E\left\{(x-\eta)^{k}\right\}=\int_{-\infty}^{+\infty}(x-\eta)^{k} f_{x}(x) d x \\
& \mu_{0}=1, \mu_{1}=0, \mu_{2}=\sigma^{2}, \mu_{3}=m_{3}-3 \eta m_{2}+2 \eta^{3}
\end{aligned}
$$

Note that

$$
\mu_{k}=E\left\{(x-\eta)^{k}\right\}=\sum_{i=0}^{k}\binom{k}{i}(-1)^{i} \eta^{i} m_{k-i} .
$$

Moments of a Normal Random Variable

For a zero mean normal random variable with probability density function

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

the moments are given as

$$
\begin{aligned}
& E\left\{x^{n}\right\}=\left\{\begin{array}{cc}
1 \cdot 3 \cdot \ldots \cdot(n-1) \sigma^{n} & n \text { even } \\
0 & n \text { odd }
\end{array}\right\}, \\
& E\left\{|X|^{n}\right\}=\left\{\begin{array}{cc}
1 \cdot 3 \cdot \ldots \cdot(n-1) \sigma^{n} & n \text { even } \\
\sqrt{\frac{2}{\pi}} 2^{k} k!\sigma^{2 k+1} & n=2 k+1
\end{array}\right\} .
\end{aligned}
$$

Tchevycheff Inequality

For a random variable X with mean η and standard deviation σ,

$$
P\{|X-\eta| \geq k \sigma\} \leq \frac{1}{k^{2}}
$$

where k is a positive constant.
Proof:

$$
\begin{aligned}
\sigma^{2} & =\int_{-\infty}^{+\infty}(x-\eta)^{2} f(x) d x \geq \int_{|x-\eta| \leq k \sigma}(x-\eta)^{2} f(x) d x \\
& \geq k^{2} \sigma^{2} \int_{|x-\eta| \geq k \sigma} f(x) d x=k^{2} \sigma^{2} P\{|x-\eta| \geq k \sigma\}
\end{aligned} .
$$

Therefore,

$$
P\{|X-\eta| \geq k \sigma\} \leq \frac{1}{k^{2}} .
$$

Approximate Evaluation of the Mean and Variance of $g(X)$

If $g(x)$ is a smoothly varying function then

$$
E\{g(X)\}=\int_{-\infty}^{+\infty} g(x) f(x) d x \approx g(\eta)+g^{\prime \prime}(\eta) \frac{\sigma^{2}}{2},
$$

and

$$
\sigma_{g(x)}^{2} \approx g^{\prime 2}(\eta) \sigma^{2} .
$$

Here

$$
\begin{aligned}
& \eta=E\{X\}, \\
& \sigma^{2}=E\left\{(X-\eta)^{2}\right\} .
\end{aligned}
$$

The proof following by using a series expansion of the density function near it mean.

