## Characteristic Function

Definition: The characteristic function of a random variable $X$ is defined as

$$
\Phi_{X}(\omega)=E\left\{e^{i \omega x}\right\}=\int_{-\infty}^{+\infty} e^{i \omega x} f_{X}(x) d x
$$

That is, $\Phi(\omega)$ is the Fourier transform of $f(x)$. For discrete random variable's with $f(x)=\sum_{j} P_{j} \delta\left(x-x_{j}\right)$, then

$$
\Phi(x)=\sum_{j} P_{j} e^{i \omega x_{j}}
$$

Definition: Second characteristic function of a random variable $X$ is defined as

$$
\psi(\omega)=\ln \Phi(\omega),
$$

or

$$
\Phi(\omega)=e^{\psi(\omega)} .
$$

## Properties of the Characteristic Function

i. $\quad \Phi(\theta)=\int_{-\infty}^{+\infty} f(x) d x=1, \psi(0)=0$
ii. $|\Phi(\omega)| \leq 1$
iii. $\Phi(\omega)$ is a positive definite function, i.e. $\sum_{m=1}^{n} \sum_{k=1}^{n} \Phi\left(\omega_{m}-\omega_{k}\right) a_{m} a_{k}^{*} \geq 0$ for any set of complex coefficients $a_{m}$. Here $a_{k}^{*}$ is the complex conjugate of $a_{k}$.

## Inversion Formula

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \Phi(\omega) e^{-i \omega x} d \omega .
$$

If $f(x)$ is an even function. i.e., $f(x)=f(-x)$, then $\Phi(\omega)$ is real and even:

$$
\Phi(\omega)=\int_{-\infty}^{+\infty} f(x) \cos \omega x d \omega=\frac{1}{\pi} \int_{0}^{\infty} \Phi(\omega) \cos \omega x d \omega .
$$

## Moment Theorem

Various order moments may be generated from the characteristic function. These are

$$
\frac{d^{n} \Phi(0)}{d \omega^{n}}=i^{n} E\left\{x^{n}\right\}=i^{n} m_{n}
$$

or

$$
m_{n}=E\left\{x^{n}\right\}=\frac{1}{i^{n}} \frac{d^{n} \Phi(0)}{d \omega^{n}} .
$$

Using a Taylor series expansion

$$
\Phi(\omega)=\sum_{j=0}^{\infty} \frac{m_{j}}{j!}(i \omega)^{j},
$$

the coefficients are related to various moments of random variable.

## Moment Generating Function

Definition: The moment generating function of a random variable $X$ is defined as

$$
\Phi_{X}^{*}(s)=E\left\{e^{s x}\right\}=\int_{-\infty}^{+\infty} e^{s x} f_{X}(x) d x
$$

For discrete random variable's with $f(x)=\sum_{j} P_{j} \chi\left(x-x_{j}\right)$, then

$$
\Phi^{*}(s)=\sum_{i} P_{i} e^{s x_{i}} .
$$

The moment generating function and the characteristic function of a random variable are related, i.e.

$$
\Phi^{*}(i \omega)=\Phi(\omega), \Phi\left(\frac{s}{i}\right)=\Phi^{*}(s)
$$

## Moment Theorem

It then follows that

$$
\begin{aligned}
& E\left\{x^{n}\right\}=\Phi^{*(n)}(0) \\
& \Phi^{*}(s)=\sum_{j=0}^{\infty} \frac{m_{j}}{j!} s^{n} .
\end{aligned}
$$

If $f(x)$ is zero for $x<0$, then $\Phi^{*}(s)$ becomes related to the Laplace transform of the density function. i.e.,

$$
\Phi(s)=\int_{0}^{\infty} f(x) e^{s x} d x=\left.L\{f(x)\}\right|_{s=-s}
$$

