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Characteristic Function 
 
Definition: The characteristic function of a random variable X  is defined as 
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That is, ( )ωΦ  is the Fourier transform of ( )xf . For discrete random variable’s with 
( ) ( )∑ −=

j
jj xxPxf δ , then 
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Definition: Second characteristic function of a random variable X  is defined as 
 
 ( ) ( )ωωψ Φ= ln , 
 
or 
 
 ( ) ( )ωψω e=Φ . 
 
Properties of the Characteristic Function 
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iii. ( )ωΦ  is a positive definite function, i.e. ( ) 0
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complex coefficients ma . Here *
ka  is the complex conjugate of ka . 

 
Inversion Formula 
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If ( )xf  is an even function. i.e., ( ) ( )xfxf −= , then ( )ωΦ  is real and even: 
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Moment Theorem 
 
 Various order moments may be generated from the characteristic function.  These 
are 
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Using a Taylor series expansion 
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the coefficients are related to various moments of random variable. 
 
 
Moment Generating Function 
 

Definition: The moment generating function of a random variable X  is defined as 
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For discrete random variable’s with ( ) ( )∑ −=

j
jj xxPxf χ , then 
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The moment generating function and the characteristic function of a random variable are 
related, i.e. 

 

 ( ) ( )ωω Φ=Φ i* , ( )s
i
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Moment Theorem 
 

It then follows that 
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 { } ( ) ( )0* nnxE Φ= , 
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 If ( )xf  is zero for 0<x , then ( )s*Φ  becomes related to the Laplace transform of 
the density function. i.e., 
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