Transformation of Random variables

Function of One Random Variable

Given that $Y(\xi)=g[X(\xi)]$ and the probability distribution of X find the probability distribution of X, we would like to find the probability distribution of Y.

By definition

$$
F_{Y}(y)=P\{Y(\xi) \leq y\}=P\{g(X(\xi)) \leq y\} .
$$

Since the statistics of $X(\xi)$ is known, the last term, namely, $P\{g(x) \leq y\}$ could be determined in terms of y. When $F_{Y}(y)$ is known, then the density function may be found. That is,

$$
f_{Y}(y)=\frac{d F_{y}(y)}{d y}
$$

Fundamental Transformation Theorem

Given $f_{X}(x)$ and $Y=g(X)$, then as the probability density function Y is given as

$$
f_{Y}(y)=\sum_{i=1}^{n} \frac{f_{X}\left(x_{i}(y)\right)}{\left|g^{\prime}\left(x_{i}(y)\right)\right|}
$$

where $x_{i}=g^{-1}(y)$ are n real roots for a given y. If for some value of y there is no real root, then

$$
f_{Y}(y)=0 .
$$

Justification: By definition,

$$
f_{Y}(y) d y=P\{y<Y \leq y+d y\}
$$

Suppose for a given y there are n roots, i.e.

$$
y=g\left(x_{i}\right), x_{i} \sim \text { root, } i=1,2, \ldots, n
$$

Thus

$$
f_{Y}(y) d y=P\left\{x_{1}<X<x_{1}+d x_{1} \cup \ldots \cup x_{n}<X \leq x_{n}+d x_{n}\right\} .
$$

or

$$
f_{Y}(y) d y=\sum_{i=1}^{n} f_{X}\left(x_{i}\right) d x_{i} \mid .
$$

Therefore,

$$
f_{Y}(y)=\sum_{i=1}^{n} \frac{f_{X}\left(x_{i}\right)}{\frac{d y}{\left|d x_{i}\right|}}=\sum_{i=1}^{n} \frac{f_{X}\left(x_{i}\right)}{\left|g^{\prime}\left(x_{i}\right)\right|}
$$

