Transformations of Random Variables

Transformations of Two Random Variables

Given the joint density of random variables X and $Y, f_{X Y}(x, y)$, and the functional relationships $Z=g(X, Y), W=h(X, Y)$, we want to find $f_{Z W}(z, w)$.

Theorem 1: To find $f_{z W}(z, w)$, solve equations

$$
\begin{aligned}
& g(x, y)=z \\
& h(x, y)=w
\end{aligned}
$$

for x and y in terms of z and w . If $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right), \ldots$ are real solutions of these equations, that is, $g\left(x_{i}, y_{i}\right)=z, h\left(x_{i}, y_{i}\right)=w$ then $f_{z W}(z, w)$ is given by

$$
f_{Z W}(z, w)=\sum_{i} \frac{f_{X Y}\left(x_{i}, y_{i}\right)}{\left|J\left(x_{i}, y_{i}\right)\right|},
$$

where

$$
J(x, y)=\left|\begin{array}{ll}
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \\
\frac{\partial h}{\partial x} & \frac{\partial h}{\partial y}
\end{array}\right|
$$

is the Jacobian of transformation. If for certain values of (z, w) there is no real solution, then $f_{z w}(z, w)=0$. (For proof see Papoulis, pp. 201-202)

Auxiliary Variables

To find the density of a function of two random variables, $Z=g(X, Y)$, introduce an auxiliary variable $W=X$ or $W=Y$. Find the joint density of Z and W by the use of Theorem 1. Then

$$
f_{Z}(z)=\int_{-\infty}^{+\infty} f_{Z w}(z, w) d w
$$

Transformations of Several Random Variables

Given the joint density, $f\left(x_{1}, \ldots, x_{n}\right)$ and $Y_{1}=g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, Y_{k}=g_{k}\left(x_{1}, \ldots, x_{n}\right)$, we want to find the joint density of $f\left(y_{1}, \ldots, y_{n}\right)$.

Theorem 2

To find $f_{\underline{\mathbf{Y}}}(\underline{\mathbf{y}})$, if $k<n$, first introduce auxiliary variables

$$
Y_{k+1}=X_{k+1}, \ldots Y_{n}=X_{n},
$$

which increases the number of \mathbf{Y} s to n . Then solve equations

$$
g_{i}(\underline{\mathbf{x}})=y_{i}, \quad i=1, \ldots, n .
$$

If $\underline{x}_{j}(j=1,2, \ldots)$ are real solutions, then

$$
f_{\underline{\underline{Y}}}(\underline{\mathbf{y}})=\sum_{j} \frac{f_{\underline{X}}\left(\mathbf{x}_{j}\right)}{\left|J\left(\underline{\mathbf{x}}_{j}\right)\right|}
$$

Real Solutions
where

$$
J(\underline{\mathbf{x}})=\left|\begin{array}{ccc}
\frac{\partial g_{1}}{\partial x_{1}} & \ldots & \frac{\partial g_{1}}{\partial x_{n}} \\
\ldots & & \ldots \\
\frac{\partial g_{n}}{\partial x_{1}} & \ldots & \frac{\partial g_{n}}{\partial x_{n}}
\end{array}\right|=\text { Jacobian }
$$

If there is no real solution (for certain values of \mathbf{y}), then

$$
f_{\underline{Y}}(\underline{\mathbf{y}})=0 .
$$

Method of Characteristic Function

To find the density of $Z=g\left(x_{1}, \ldots, x_{n}\right)$, one option is to find the characteristic function of Z first. i.e.,

$$
\Phi_{Z}(\omega)=E\left\{e^{i \omega z}\right\}=E\left\{e^{i \omega g(\underline{x})}\right\}=\int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} e^{i g(\underline{x})} f_{\underline{X}}(\underline{x}) d x_{1} \ldots d x_{n} .
$$

Then

$$
f_{Z}(z)=\mathfrak{J}^{-1}\left\{\Phi_{Z}(\omega)\right\}=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i \omega z} \Phi_{Z}(\omega) d \omega .
$$

