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Transformations of Random Variables 
 

Transformations of Two Random Variables 
 

Given the joint density of random variables X and Y, ( )yxf XY , , and the functional 
relationships ( )Y,XgZ = , ( )Y,XhW = , we want to find ( )w,zf ZW . 
 
Theorem 1: To find ( )w,zf ZW , solve equations 
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, 

 
for x and y in terms of z and w.  If ( ) ( ),...,,...,, 11 nn yxyx  are real solutions of these 
equations, that is, ( ) zyxg ii =, , ( ) wy,xh ii =  then ( )w,zf ZW  is given by 
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is the Jacobian of transformation.  If for certain values of ( )w,z  there is no real solution, 
then ( ) 0=w,zf ZW . (For proof see Papoulis, pp. 201-202) 

 
Auxiliary Variables 
 

To find the density of a function of two random variables, ( )YXgZ ,= , introduce 
an auxiliary variable XW =  or YW = .  Find the joint density of Z and W by the use of 
Theorem 1. Then 

 ( ) ( )∫
+∞

∞−

= dww,zfzf ZWZ  

 
Transformations of Several Random Variables 
 

Given the joint density, ( )nx,...,xf 1  and ( ) ( )nkkn xxgYxxgY ,...,,...,,..., 1111 == , we 
want to find the joint density of ( )nyyf ,...,1 . 
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Theorem 2 
 

To find ( )yYf , if nk < , first introduce auxiliary variables 
 
 nnkk XYXY == ++ ,...11 , 
 

which increases the number of Ys to n.  Then solve equations 
 
 ( ) ii yg =x ,  ni ,...,1= . 
 

If jx  ( ,...2,1=j ) are real solutions, then 
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If there is no real solution (for certain values of y), then 

 
 ( ) 0=yYf . 
 

Method of Characteristic Function 
 

To find the density of ( )nxxgZ ,...,1= , one option is to find the characteristic 
function of Z first. i.e., 

 

 ( ) { } ( ){ } ( ) ( )∫∫
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