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Conditional Distributions and Densities 
 
Definition: Conditional distribution of random variable Y  given event m  is defined as 
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Similarly, 
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Conditional Distribution and Density of Y Given that X = x 
 

Noting that 
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That is 
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and 
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Similarly one finds 
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Conditional Expected Value 
 
Definition: Conditional expected value of a function of a random variable is defined as 
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Conditional expected value of a function of a random variable given X= x is defined as 
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Chapman-Kolmogorov Equation 
 

Noting that 
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Integrating over y , we find 
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For Markov processes ( ) ( )yxfzyxf XX |,| = . Hence, 
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This integral equation is the Chapman-Kolmogorov equation for a Markov process. It is a 
nonlinear equation for the (transition) conditional density function. 
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Sample Mean and Sample Variance 
 
Definition: Sample Mean 
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Definition: Sample Variance 
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Clearly X  and V  are random variables. 
 

Consider the case that iX  have the same mean and variance and they form a 
sequence of uncorrelated random variables.  It may be shown that 
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When iX  are jointly normal with 
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In statistics, chi-statistics, and chi-square statistics are used frequently. These are 
defined as 
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The density functions of χ  and Y=2χ  are given as 
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Estimating Mean and Variance for Random Data 
 

The mean and variance of a set of random data are given as 
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If the random variables iX  have η  and 2σ  as mean and variance then 
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Theorem: If X  is the mean of a random sample of size n  taken from a population 
having the mean η  and the variance 2σ , then 
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is a random variable whose distribution approaches that of the standard normal 
distribution as ∞→n . i.e., 
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Note that 
 
  ( { } 68.01 ≈≤ZP , { } 85.02 =≤ZP , { } 997.03 =≤ZP ). 
 
 
Size of a Sample for a Required Accuracy 
 

Let 
 
error = η−= XE ,  

 
and the set 



   

ME529  G. Ahmadi 7
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The size of the sample needed is given by 
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That is if the sample size is given by 2
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error will not be more than E . 
 

Example: Let 3=z , 2=σ , and 01.0=E .  Then, ( )( ) 4
4 1036

10
49

×== −n  data points  are 

needed to estimate the mean with a probability of 997.0  and error less than 01.0 . 
 
For 1.0=E  under the same condition 3600=n . 
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Alternative Definition for Probability Density Function 
 

The probability density function of a random variable ( )ξX  may be defined as 
 
  ( ) ( ){ }xXExf X −= δ . (Stratonovich) 
 
This definition is equivalent to the common definition of the density function and the 
expected value. i.e., 
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The entire theory of probability may be developed based on the alternative  

(Stratonovich) definition of the probability density function (pdf).  For example, if 
( )XgY = , then 

 

  ( ) ( )[ ] ( )∫
+∞

∞−
−= dxxfyxgyf XY δ . 

 

Using the property that ( )[ ] ( )
( )∑ ′

−
=−

j j

j

xg

xx
yxg

δ
δ , where jx  is the solution to ( ) yxg = , 

it follows that 
 

  ( ) ( ) ( ) ( )
( )∑∫ ∑ ′

=−=
∞+

∞−
j j

jX

j
XjY xg

xf
dxxfxxyf δ . 


