
Jointly Normal (Gaussian) Random Variables 
 
 Random variables 1X , 2X , … nX  are jointly normal if their joint density 
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where 
 
 { }xE=η , ( { }jj XE=η ), 
 
and 
 
 [ ]ijµ=Λ  with ( )( ){ }jjiiij XXE ηηµ −−= , 
 
is the n x n covariance matrix of x . Here, 
 
 Λ=Λ det . 
 

The jointly normal density function may be rewritten as 
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The corresponding characteristic function becomes 
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Important Properties of Normal Random Variables: 
 

1. When the first and second order moments (namely η  and Λ ) are given, the 
density function is fully specified. 

2. If { } 0X =E , then the odd moments vanish, i.e. { } 0...21
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the sum is taken over all possible combinations of 
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4. Linear combinations of normal random variables are also normal, e.g. if iX  are 
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More generally, a linear transformation of normal random variables leads to a set of new 
normal random variables. 
 
Inequalities 
 
Schwarz Inequality 
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Holder Inequality 
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