

Mean-Square Estimation

Estimation of a Random Variable by a Constant

It is some of interest to estimate a random variable by a constant. That is, we want to find a constant such that the error,

$$I = E\left\{ (X - \alpha)^2 \right\}$$

is minimum. It then follows that

$$I = E\left[(X - \alpha)^2\right] = E\left\{X^2\right\} - 2\alpha E\left\{X\right\} + \alpha^2.$$

Minimizing I,

$$\frac{\partial I}{\partial \alpha} = 0$$

lead to

$$\alpha = E\{X\},\$$

where $E\{X\}$ is the expected value of X.

i) Nonlinear Mean-Square Estimation

It is some of interest to estimate a random variable as function of another random variable. That is, we want to estimate random variable Y by a function g(X) such that the error,

$$E\left\{\left[Y-g(X)\right]^2\right\}$$
 is minimum.

Theorem: It may be shown (see page 217 of Papoulis for proof), minimizing the error leads to

$$g(X) = E\{Y \mid X\}.$$

ii) Linear Mean-Square Estimation

Assume
$$g(X) = aX + b$$
.

Theorem: When the joint statistics of *X* and *Y* are known, it may be shown that the parameters of the linear mean-square estimation are given by

$$a = \frac{r\sigma_Y}{\sigma_Y}, \qquad b = E\{Y\} - aE\{X\}$$

and the minimum error e_m is given by

$$e_m = \sigma_Y^2 (1-r^2).$$

Here r is the correlation coefficient defined by

$$r = E \frac{\left\{ \left(X - \eta_X \right) \left(Y - \eta_Y \right) \right\}}{\sigma_X \sigma_Y}.$$

If $\eta_X = \eta_Y = 0$, then $b = 0$,

$$a = \frac{E\{XY\}}{E\{X^2\}}$$

and

$$e_m = E\left\{Y^2\right\} - E\left\{\left(aX\right)^2\right\}$$

Note that *a* minimizes $E\{(Y - aX)^2\}$. i.e., $E\{(Y - aX)X\} = 0$. This means *X* is orthogonal to Y - aX and $e_m = E\{(Y - aX)Y\}$.

Theorem:

If X and Y are jointly normal, then nonlinear and linear mean-square estimation of Y in terms of X leads to identical solution. i.e.,

$$E\{Y \mid X\} = aX$$
, $a = E\frac{\{XY\}}{E\{X^2\}}$.

iii) Mean-Square Estimation (Several Random Variables)

Find estimate of random variable X_0 in terms of X_1, X_2, \dots, X_n .

Minimizing the error

$$E\{[X_0 - g(X_1,...,X_n)]^2\},\$$

it follows that

$$X_0 = g(X_1, ..., X_n) = E\{X_0 \mid X_1, ..., X_n\}.$$

iv) Linear Mean-Square Estimation

Assuming is a linear function. That is,

$$g = a_1 X_1 + \ldots + a_n X_n = \sum_i a_i X_i$$
.

Then minimizing the estimation error leads to

$$E\left\{\left(X_{0}-\sum_{i}a_{i}X_{i}\right)X_{j}\right\}=0$$

and

$$R_{0j} = \sum_{i} R_{ji} a_i$$
 with $j = 1, ..., n$,

which can be solved for finding a_i .

v) Jointly Normal Random Variables

If X_0, X_1, \dots, X_n are jointly normal, then the linear mean-square estimation becomes identical to the best nonlinear mean-square estimation. That is,

$$E\{X_0 \mid X_1,...,X_n\} = \sum_i a_i X_i$$
.