Mean-Square Estimation

Estimation of a Random Variable by a Constant

It is some of interest to estimate a random variable by a constant. That is, we want to find a constant such that the error,

$$
I=E\left\{(X-\alpha)^{2}\right\}
$$

is minimum. It then follows that

$$
I=E\left[(X-\alpha)^{2}\right]=E\left\{X^{2}\right\}-2 \alpha E\{X\}+\alpha^{2}
$$

Minimizing I,

$$
\frac{\partial I}{\partial \alpha}=0
$$

lead to

$$
\alpha=E\{X\},
$$

where $E\{X\}$ is the expected value of X.

i) Nonlinear Mean-Square Estimation

It is some of interest to estimate a random variable as function of another random variable. That is, we want to estimate random variable Y by a function $g(X)$ such tha the error,

$$
E\left\{[Y-g(X)]^{2}\right\} \text { is minimum. }
$$

Theorem: It may be shown (see page 217 of Papoulis for proof), minimizing the error leads to

$$
g(X)=E\{Y \mid X\}
$$

ii) Linear Mean-Square Estimation

Assume $g(X)=a X+b$.
Theorem: When the joint statistics of X and Y are known, it may be shown that the parameters of the linear mean-square estimation are given by

$$
a=\frac{r \sigma_{Y}}{\sigma_{X}}, \quad b=E\{Y\}-a E\{X\}
$$

and the minimum error e_{m} is given by

$$
e_{m}=\sigma_{Y}^{2}\left(1-r^{2}\right) .
$$

Here r is the correlation coefficient defined by

$$
r=E \frac{\left\{\left(X-\eta_{X}\right)\left(Y-\eta_{Y}\right)\right\}}{\sigma_{X} \sigma_{Y}} .
$$

If $\eta_{X}=\eta_{Y}=0$, then $b=0$,

$$
a=\frac{E\{X Y\}}{E\left\{X^{2}\right\}}
$$

and

$$
e_{m}=E\left\{Y^{2}\right\}-E\left\{(a X)^{2}\right\}
$$

Note that a minimizes $E\left\{(Y-a X)^{2}\right\}$. i.e., $E\{(Y-a X) X\}=0$. This means X is orthogonal to $Y-a X$ and $e_{m}=E\{(Y-a X) Y\}$.

Theorem:

If X and Y are jointly normal, then nonlinear and linear mean-square estimation of Y in terms of X leads to identical solution. i.e.,

$$
E\{Y \mid X\}=a X, \quad a=E \frac{\{X Y\}}{E\left\{X^{2}\right\}} .
$$

iii) Mean-Square Estimation (Several Random Variables)

Find estimate of random variable X_{0} in terms of $X_{1}, X_{2}, \ldots X_{n}$.
Minimizing the error

$$
E\left\{\left[X_{0}-g\left(X_{1}, \ldots, X_{n}\right)\right]^{2}\right\},
$$

it follows that

$$
X_{0}=g\left(X_{1}, \ldots, X_{n}\right)=E\left\{X_{0} \mid X_{1}, \ldots, X_{n}\right\} .
$$

iv) Linear Mean-Square Estimation

Assuming is a linear function. That is,

$$
g=a_{1} X_{1}+\ldots+a_{n} X_{n}=\sum_{i} a_{i} X_{i} .
$$

Then minimizing the estimation error leads to

$$
E\left\{\left(X_{0}-\sum_{i} a_{i} X_{i}\right) X_{j}\right\}=0
$$

and

$$
R_{0 j}=\sum_{i} R_{j i} a_{i} \text { with } j=1, \ldots, n,
$$

which can be solved for finding a_{i}.

v) Jointly Normal Random Variables

If $X_{0}, X_{1}, \ldots X_{n}$ are jointly normal, then the linear mean-square estimation becomes identical to the best nonlinear mean-square estimation. That is,

$$
E\left\{X_{0} \mid X_{1}, \ldots, X_{n}\right\}=\sum_{i} a_{i} X_{i} .
$$

