Transformation of Stochastic Processes

Consider a system T that transforms a stochastic process $X(t, \varepsilon)$ into another process $T(t, \varepsilon)$, i.e.

$$
Y(t, \varepsilon)=T[X(t, \varepsilon)] . \quad X(t, \varepsilon) \Rightarrow \quad T \quad Y(t, \varepsilon)=T(X)
$$

The system is deterministic if T only operates on t . The system is stochastic if T operates on both t and ε. That is, if $X\left(t, \varepsilon_{1}\right)=X\left(t, \varepsilon_{2}\right)$, then $Y\left(t, \varepsilon_{1}\right)=Y\left(t, \varepsilon_{2}\right)$ for a deterministic system. For a stochastic system the response to identical inputs are generally different.

Memory-less Systems

A system is called memory-less if

$$
Y(t)=g[X(t)]
$$

with g being a function of X. The response at time t then depends only on $X(t)$. Therefore, the random variable $\mathrm{Y}(\mathrm{t})$ is an algebraic function of $\mathrm{X}(\mathrm{t})$. Thus, the first order density of $\mathrm{Y}(\mathrm{t})$ is given as

$$
f_{Y}(y, t)=\sum_{j} \frac{f_{X}\left(x_{j} ; t\right)}{|g|}, x_{j}=g_{j}^{-1}(y) .
$$

Similarly, the joint density of $Y\left(t_{1}\right)$ and $Y\left(t_{2}\right)$ may be found from that of $X\left(t_{1}\right)$ and $X\left(t_{2}\right)$. The mean and autocorrelation of $\mathrm{Y}(\mathrm{t})$ are also given as

$$
\begin{aligned}
& E\{Y(t)\}=\int_{-\infty}^{+\infty} g(x) f_{X}(x ; t) d x, \\
& E\left\{Y\left(t_{1}\right) Y\left(t_{2}\right)\right\}=\int_{-\infty}^{+\infty+\infty} \int_{-\infty}^{+\infty} g\left(x_{1}\right) g\left(x_{2}\right) f_{X}\left(x_{1}, x_{2} ; t_{1}, t_{2}\right) d x_{1} d x_{2} .
\end{aligned}
$$

Derivative of a Random Process

Let $\mathrm{X}(\mathrm{t})$ be differentiable with its derivative given by

$$
X^{\prime}(t)=\frac{d X}{d t}=\lim _{\varepsilon \rightarrow 0} \frac{X(t+\varepsilon)-X(t)}{\varepsilon} .
$$

We assume that the limit exists in mean-square sense.

To find the mean and autocorrelation of $\mathrm{X}^{\prime}(\mathrm{t})$, we proceed as follows:

Mean of $X^{\prime}(t)$:

$$
E\left\{\frac{d X}{d t}\right\}=\frac{d}{d t} E\{X\}=\frac{d \eta(t)}{d t} .
$$

Autocorrelation of $X^{\prime}(t)$:

$$
R_{X^{\prime} X^{\prime}}\left(t_{1}, t_{2}\right)=E\left\{X^{\prime}\left(t_{1}\right) X^{\prime}\left(t_{2}\right)\right\}=E\left\{\frac{d X\left(t_{1}\right)}{d t_{1}} \quad \frac{d X\left(t_{2}\right)}{d t_{2}}\right\},
$$

or

$$
R_{X^{\prime} X^{\prime}}\left(t_{1}, t_{2}\right)=\frac{\partial^{2} R_{X X}\left(t_{1}, t_{2}\right)}{\partial t_{1} \partial t_{2}} .
$$

Similarly cross correlation of X and X' may be found, i.e.

$$
R_{X X}\left(t_{1}, t_{2}\right)=\frac{\partial R_{X X}\left(t_{1}, t_{2}\right)}{\partial \partial t_{2}} .
$$

If $\mathrm{X}(\mathrm{t})$ is a stationary process, then

$$
R_{X X}\left(t_{1}, t_{2}\right)=R_{X X}\left(t_{1}-t_{2}\right) .
$$

Thus,

$$
\begin{aligned}
& R_{X X^{\prime}}(\tau)=-\frac{d R_{X X}(\tau)}{d \tau}, \quad \tau=t_{1}-t_{2} \\
& R_{X^{\prime} X^{\prime}}(\tau)=-\frac{d^{2} R_{X X}(\tau)}{d \tau^{2}}
\end{aligned}
$$

The mean-square of X^{\prime} ' is then given as

$$
E\left\{\left[X^{\prime}(t)\right]^{2}\right\}=R_{X^{\prime} X^{\prime}}(0)=-\frac{d^{2} R_{X X}(0)}{d \tau^{2}} .
$$

Random Linear Differential Equations

Consider a linear differential equation with random excitation of the form

$$
\begin{equation*}
L_{t} Y(t)=a_{n} \frac{d^{n} Y}{d t^{n}}+a_{n-1} \frac{d^{n-1} Y}{d t^{n-1}}+\ldots+a_{0} Y(t)=X(t), \tag{1}
\end{equation*}
$$

where a_{j} are constants and $X(t)$ is a random process. The initial conditions are

$$
\begin{equation*}
Y(0)=\frac{d Y(0)}{d t}=\ldots=\frac{d^{n-1} Y(0)}{d t^{n-1}}=0 . \tag{2}
\end{equation*}
$$

Mean of \mathbf{Y}

To find $\eta_{Y}(t)=E\{Y(t)\}$ take the expected value of the differential equation and the initial conditions. The results are

$$
\begin{equation*}
L_{t} \eta_{Y}(t)=a_{n} \frac{d^{n} \eta_{Y}}{d t^{n}}+\ldots+a_{0} \eta_{Y}(t)=\eta_{X}(t), \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\eta_{Y}(0) \frac{d \eta_{Y}(0)}{d t}=\ldots=\frac{d^{n-1} \eta_{Y}(0)}{d t^{n-1}}=0 \tag{4}
\end{equation*}
$$

Equation (3) is a deterministic equation for determining $\eta_{Y}(t)$.

Correlation of \mathbf{Y}

Write Equation (1) at time t_{2} and multiply by $\mathrm{X}\left(\mathrm{t}_{1}\right)$. i.e.,

$$
\begin{equation*}
X\left(t_{1}\right)\left[L_{t_{2}} Y\left(t_{2}\right)=X\left(t_{2}\right)\right] \tag{5}
\end{equation*}
$$

Taking the expected value of (5), we find

$$
\begin{equation*}
L_{t_{2}} R_{X Y}\left(t_{1}, t_{2}\right)=R_{X X}\left(t_{1}, t_{2}\right) \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{n} \frac{\partial^{n} R_{X Y}\left(t_{1}, t_{2}\right)}{\partial t_{2}^{n}}+\ldots+a_{0} R_{X Y}\left(t_{1}, t_{2}\right)=R_{X X}\left(t_{1}, t_{2}\right) . \tag{7}
\end{equation*}
$$

Multiplying the initial conditions given by Equation (2) by $\mathrm{X}\left(\mathrm{t}_{1}\right)$ and taking expected value we find

$$
\begin{equation*}
R_{X Y}\left(t_{1}, 0\right)=\frac{\partial R_{X Y}\left(t_{1}, 0\right)}{\partial t_{2}}=\ldots=\frac{\partial^{n-1} R_{X Y}\left(t_{1}, 0\right)}{\partial t_{2}^{n-1}}=0 . \tag{8}
\end{equation*}
$$

Solution of the deterministic equation given by (7) with initial conditions given by (8) yields $\mathrm{R}_{\mathrm{XY}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$.

Now write Equation (1) at time t_{1} and multiply the result by $\mathrm{Y}\left(\mathrm{t}_{2}\right)$. Taking the expected value we find

$$
\begin{equation*}
L_{t}=R_{Y Y}\left(t_{1}, t_{2}\right)=R_{X Y}\left(t_{1}, t_{2}\right), \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{n} \frac{\partial^{n} R_{Y Y}\left(t_{1}, t_{2}\right)}{\partial t_{1}^{n}}+\ldots+a_{0} R_{Y Y}\left(t_{1}, t_{2}\right)=R_{X Y}\left(t_{1}, t_{2}\right) . \tag{10}
\end{equation*}
$$

The solution to (10) with initial conditions

$$
\begin{equation*}
R_{Y Y}\left(0, t_{2}\right)=\frac{\partial R_{Y Y}\left(0, t_{2}\right)}{\partial t_{1}}=\ldots=\frac{\partial^{n-1} R_{Y Y}\left(0, t_{2}\right)}{\partial t_{1}^{n-1}}=0, \tag{11}
\end{equation*}
$$

Gives $\mathrm{R}_{\mathrm{Yy}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$.
Note that even if $\mathrm{X}(\mathrm{t})$ is a stationary process, $\mathrm{Y}(\mathrm{t})$ is a non-stationary process. The reason is that at $t=0$ the initial conditions given by (2) are forced on $\mathrm{Y}(\mathrm{t})$.

