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Analysis of Linear Systems  
 
 
Deterministic Systems 
 

Consider a linear system 
 
 ( ) ( )tXtLY = ,                (1) 
 
where L  is a deterministic linear differential operator. Also let 
 

 ( ) ( ) 0...00 ===
dt

dYY .               

(2) 
 
Suppose ( )th  is the impulse response of the linear system. That is, 
 
 ( ) ( )ttLh δ= ,                (3) 
 
with 
 
 ( ) 0...0 ==h .                (4) 
 
Formally we may write 
 
 ( ) ( )tLth t δ

1−= .                (5) 
 
Similarly, 
 

 ( ) ( ) ( ) ( ) ( ) ( )∫∫
+∞

∞−

−+∞

∞−

−− −=−== ττδτττδτ dtLXdtXLtXLtY ttt
111          (6) 

 
or 
 

 ( ) ( ) ( )∫
+∞

∞−
−= τττ dXthtY .              (7) 

 
Noting that ( ) ( ) 0== thtX  for 0<t , we find 
 

 ( ) ( ) ( )∫ −=
t

dXthtY
0

τττ .              (8) 

 
This equation is the basis for the analysis of deterministic (or random) linear systems. 
When ( )tX  act for +∞<<∞− t , then equation (7) must be used. Alternatively, 
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 ( ) ( ) ( )∫
+∞

∞−
−= τττ dtXhtY .              (9) 

 
 
Random Linear Systems 
 

Consider a linear system which is identified by its impulse response ( )th  or its 
system function ( )ωH  (or ( )ωiH ).  Note that 
 

 ( ) ( ) ( )∫
+∞

∞−

−== dtethiHH tiωωω .          (10) 

 
Stationary Response Analysis 
 

Suppose ( )tX  is a stationary input and ( )tY  is a stationary response, then 
 

  ( ) ( ) ( ) ( ) ( )∫∫
+∞

∞−

+∞

∞−
−=−= ττττττ dtXhdXthtY .        (11) 

 
Note that ( ) 0=th  for 0<t . Thus Equation (11) is equivalent to 
 

  ( ) ( ) ( ) ( ) ( )∫∫
+∞

∞−
−=−=

0
ττττττ dtXhdXthtY

t
.        (12) 

 
Mean of Y(t) 
 

Taking expected value of (11), we find 
 

( ){ } ( ) ( ){ } ( ) ( )0HdhdtXEhtYE XX ηττητετ ==−= ∫∫
+∞

∞−

+∞

∞−
.        (13) 

 
Autocorrelation and Cross-Correlation 
 

Multiplying (11) by ( )τ−tX  and taking expected value we find 
 

 ( ) ( ){ } ( ) ( ){ } ( )∫
+∞

∞−
−−=− αατατ dhtXtXEtXtYE         (14) 

 
or 
 

 ( ) ( ) ( ) ( ) ( )τταααττ hRdhRR XXXXYX *=−= ∫
+∞

∞−
.        (15) 

 
That is, the cross-correlation of Y  and X  is the convolution of ( )τXXR  and ( )τh . 
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Multiplying (11) by ( )τ+tY  and taking expected value, the result is 
 

 ( ) ( ){ } ( ) ( ){ } ( )∫
+∞

∞−
−+=+ ταατττ dhtXtYEYtYE ,  

 
or 
 

 ( ) ( ) ( ) ( ) ( )∫∫
+∞

∞−

+∞

∞−
−−=+= αααταααττ dhRdhRR YXYXYY .       (16) 

 
That is, 
 
 ( ) ( ) ( )τττ −= hRR YXYY * .           (17) 
 

Similarly, one may show 
 
 ( ) ( ) ( )τττ −= hRR XXXY * ,           (18) 
 
and 
 
 ( ) ( ) ( )τττ hRR XYYY *= .           (19) 
 
Thus, 
 
 ( ) ( ) ( ) ( )ττττ −= hhRR XXYY ** .          (20) 

 
Clearly, stationary input produces stationary input for a linear system. 
 
System Identification 
 

For a white noise input with ( ) ( )τδτ =XXR , Equation (15) yields 
 
 ( ) ( )ττ hRYX = . 
 

Thus, evaluating  
 

( ) ( ){ } ( ) ( ) ( )τττ YX

t
RdttXtY

T
tXtYE ≈+≈+ ∫0

1 ,  

 
gives the impulse response. 
 
Power Spectrum 
 

Recalling that the Fourier transform of the convolution of two functions is the 
product of their Fourier transforms, from (15) it follows that 
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 ( ) ( ) ( )ωωω HSS XXYX =            (21) 
 

Similarly, from (7), (18), (19), and (20) one finds 
 
 ( ) ( ) ( )ωωω *

YXYY HSS = ,           (22) 
 
 ( ) ( ) ( )ωωω *

XXXY HSS = ,           (23) 
 
 ( ) ( ) ( )ωωω *

XYYY HSS = ,           (24) 
 

and 
 
 ( ) ( ) ( ) 2ωωω HSS XXYY = .           (25) 
 

In these equations, ( )ωH  is the system function defined by Equation (10) and ( )ω*H  is 
its complex conjugate. i.e., 

 

 ( ) ( ) ( )∫∫
+∞

∞−

+∞

∞−

− =−= ττττω ωω dehdehH titi* .         (26) 

 
Furthermore, Impulse response function and the system functions are Fourier pair.  That 
is,   

 ( ) ( )∫
∞+

∞−
= ωω

π
ω dHeth ti

2
1 .           (27) 

 
 
Spectral Relationships 
 

Given a linear differential equation with constant coefficients 
 

 ( ),... 01

1

1 tXYa
dt

Yda
dt

Yda n

n

nn

n

n =+++ −

−

− , 

 
the system function is given as 

 

 ( )
( ) 0

1
a...ia

H n
n ++

=
ω

ω . 

 
More generally, taking Fourier transform 
 
 ( ) ( ) ( )ωωω XHY = , 
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where ( )ωH  is the system function.  The expected value of Y, { }YE , then is given as 
 

 { } ( ) { } { }XE
a

XEHYE
0

10 == , 

 
and the power spectrum of the response then is given by 

 
 ( ) ( ) ( ) 2ωωω HSS XXYY = . 
 

 
 
Example: Langevin’s Equation (Brownian Motion)  

 
The equation of motion of a Brownian particle is given as 
 

 nV
dt
dV

=+ β ,  { } 0=nE ,   ( ) α=wSnn . 

 
The power spectrum of V is then given as  
 

 ( ) ( ) ( )ωωω nnVV SHS 2= ,  ( )
βω

ω
+

=
i

H 1 ,  ( ) 22
2 1

βω
ω

+
=H  

 
Therefore, 

 

 ( ) 22 βω
α
+

=wSVV . 

 
The corresponding autocorrelation of V becomes 
 

 ( ) τβ

β
ατ −= eRVV 2

, 

 
and 
 

 { }
β
α
2

2 =VE , { } 0=VE . 
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Examples of Stochastic Response Analyses
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