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Equivalent Linearization Technique 
 
 Consider a non-linear system given as 
 
 ( ) ( )tfXXgX =+ &&& , ,               (1) 
 
where f(t) is a random process and ( )XXg &,  is an arbitrary function of X and X& . We 
assume that Equation (1) may be replaced by its equivalent linear system, which is given 
as  
 
 ( )tfXXX ee =++ 2ωβ &&& ,              (2) 
 
where eβ  is the equivalent damping and eω  is the equivalent natural frequency. 
 

The mean-square error for replacing Equation (1) by (2) is given as 
 
 ( ){ } { } ( )( ){ }2222 , XXgXXEeEerrorE ee

&& −+== ωβ .           (3) 
 
The equivalent parameters are selected in such a way that the mean-square error given by 
(3) is a minimum. That is,  
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From (4) and (5) it follows that 
 
 { } { } ( ){ }XXgXEXXEXE ee

&&&& ,22 =+ωβ ,            (6) 
 
 { } { } ( ){ }XXXgEXXEXE ee

&& ,22 =+ βω .            (7) 
 
Solving for the equivalent parameters, we find 
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To evaluate the moments on the right hand sides of (8) and (9), the joint density of X and 
X&  is needed. When the excitation is a normal process, the common procedure is to 
assume that the response is also a normal process. 
 
Stationary Response 
 

For stationary response analysis, { } 0=XXE & , Equations (8) and (9) may then be 
restated as 
 

 { }
{ }2

2

XE
XgE

e =ω ,  { }
{ }2XE

gXEe
&

&
=β .            

(10) 
 
From the fact that 
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and 
 
 { } { } { } 022 ≥− XXEXEXE && ,            (12) 
 
it follows that the solutions given by (8) – (10) are a minimum and the mean square error 
is minimized. 
 
Quasi-Gaussian Processes 
 

For Gaussian processes, it may be shown that 
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