Equivalent Linearization Technique

Consider a non-linear system given as

$$
\begin{equation*}
\ddot{X}+g(X, \dot{X})=f(t) \tag{1}
\end{equation*}
$$

where $\mathrm{f}(\mathrm{t})$ is a random process and $g(X, \dot{X})$ is an arbitrary function of X and \dot{X}. We assume that Equation (1) may be replaced by its equivalent linear system, which is given as

$$
\begin{equation*}
\ddot{X}+\beta_{e} \dot{X}+\omega_{e}^{2} X=f(t), \tag{2}
\end{equation*}
$$

where β_{e} is the equivalent damping and ω_{e} is the equivalent natural frequency.
The mean-square error for replacing Equation (1) by (2) is given as

$$
\begin{equation*}
E\left\{(\text { error })^{2}\right\}=E\left\{e^{2}\right\}=E\left\{\left(\beta_{e} \dot{X}+\omega_{e}^{2} X-g(X, \dot{X})\right)^{2}\right\} . \tag{3}
\end{equation*}
$$

The equivalent parameters are selected in such a way that the mean-square error given by (3) is a minimum. That is,

$$
\begin{align*}
& \frac{\partial}{\partial \beta_{e}} E\left\{e^{2}\right\}=0=2 E\left\{\dot{X}\left[\beta_{e} \dot{X}+\omega_{e}^{2} X-g(X, \dot{X})\right]\right\} \tag{4}\\
& \frac{\partial}{\partial\left(\omega_{e}^{2}\right)} E\left\{e^{2}\right\}=0=2 E\left\{X\left[\beta_{e} \dot{X}+\omega_{e}^{2} X-g(X, \dot{X})\right]\right\} . \tag{5}
\end{align*}
$$

From (4) and (5) it follows that

$$
\begin{align*}
& \beta_{e} E\left\{\dot{X}^{2}\right\}+\omega_{e}^{2} E\{X \dot{X}\}=E\{\dot{X} g(X, \dot{X})\}, \tag{6}\\
& \omega_{e}^{2} E\left\{X^{2}\right\}+\beta_{e} E\{X \dot{X}\}=E\{X g(X, \dot{X})\} . \tag{7}
\end{align*}
$$

Solving for the equivalent parameters, we find

$$
\begin{equation*}
\omega_{e}^{2}=\frac{E\left\{\dot{X}^{2}\right\} E\{X g\}-E\{X \dot{X}\} E\{\dot{X} g\}}{E\left\{X^{2}\right\} E\left\{\dot{X}^{2}\right\}-(E\{X \dot{X}\})^{2}}, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{e}=\frac{E\left\{X^{2}\right\} E\{\dot{X} g\}-E\{X \dot{X}\} E\{X g\}}{E\left\{X^{2}\right\} E\left\{\dot{X}^{2}\right\}-(E\{X \dot{X}\})^{2}} . \tag{9}
\end{equation*}
$$

To evaluate the moments on the right hand sides of (8) and (9), the joint density of X and \dot{X} is needed. When the excitation is a normal process, the common procedure is to assume that the response is also a normal process.

Stationary Response

For stationary response analysis, $E\{X \dot{X}\}=0$, Equations (8) and (9) may then be restated as

$$
\begin{equation*}
\omega_{e}^{2}=\frac{E\{X g\}}{E\left\{X^{2}\right\}}, \quad \beta e=\frac{E\{\dot{X} g\}}{E\left\{\dot{X}^{2}\right\}} . \tag{10}
\end{equation*}
$$

From the fact that

$$
\begin{equation*}
\frac{\partial^{2} E\left\{e^{2}\right\}}{\partial\left(\omega_{e}^{2}\right)^{2}}=2 E\left\{X^{2}\right\}, \quad \frac{\partial^{2} E\left\{X^{2}\right\}}{\partial \beta_{e}^{2}}=2 E\left\{\dot{X}^{2}\right\}, \quad \frac{\partial^{2} E\left\{e^{2}\right\}}{\partial \beta_{e} \partial\left(\omega_{e}^{2}\right)}=2 E\{X \dot{X}\}, \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left\{X^{2}\right\} E\left\{\dot{X}^{2}\right\}-E\{X \dot{X}\} \geq 0, \tag{12}
\end{equation*}
$$

it follows that the solutions given by (8) - (10) are a minimum and the mean square error is minimized.

Quasi-Gaussian Processes

For Gaussian processes, it may be shown that

$$
\begin{equation*}
\omega_{e}^{2}=E\left\{\frac{\partial g}{\partial X}\right\}, \quad \quad \beta e=E\left\{\frac{\partial g}{\partial \dot{X}}\right\} \tag{13}
\end{equation*}
$$

