1. If a space $S$ consists $n$ elements, show that the total number of its subsets is $2^{\text {n }}$.

Hint:
$S=\left\{\zeta_{1}, \zeta_{2}, \cdots, \zeta_{6}\right\}$. The subsets are:

2. If $a \cap b \neq 0$, show $P(a \cup b)=P(a)+P(b)-P(a \cap b)$

Hint:

$$
\begin{aligned}
& a \cup b=a \cup(\bar{a} \cap b) \\
& P(a \cup b)=P(a \cup(\bar{a} \cap b))=P(a)+P(\bar{a} \cap b) . \\
& \quad b=(b \cap a) \cup(b \cap \bar{a})
\end{aligned}
$$


3. Show that $P(a \cap b \cap c)=P(a \mid b \cap c) P(b \mid c) P(c)$

Hint:

$$
P(b \mid c)=\frac{P(b \cap c)}{P(c)} \text {, thus, } P(b \mid c) P(c)=P(b \cap c)
$$

4. Is it possible that two events are independent and mutually exclusive?

## Hint:

$$
\text { Independent } \Rightarrow P(a \cap b)=P(a) P(b)
$$

Mutually exclusive events $\Rightarrow P(a \cap b)=0$
5. The probability that an electron is emitted from a substance in an interval $\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right), \mathbf{t}_{2}>\mathbf{t}_{\mathbf{1}}>\mathbf{0}$ is given by

$$
P\left\{t_{1} \leq t \leq t_{2}\right\}=e^{-\beta t_{1}}-e^{-\beta t_{2}} \quad \beta=\mathrm{const}
$$

Find $P\left\{t_{0} \leq t \leq t_{0}+\tau \mid t \geq t_{0}\right\}$

Hint: Use the definition of conditional probability.
6. Two fair dice are rolled 10 times, find the probability $p$ that "seven" will show at least once.

Hint:
There are six possibilities for "seven" to show, namely, $\{1+6,2+5,3+4,4+3,2+5,6+1\}$. The probability that seven occurs in one trial is $1 / 6$ and probability that seven does not occur in on trial is $5 / 6$,
7. A fair coin is tossed $n=900$ times. Find the probability that the number of heads will be between 420 and 465 .

Hint:
Use the Demoivre-Laplace approximation,

$$
P_{n}\left(k_{1} \leq k \leq k_{2}\right)=\sum_{k=k_{1}}^{k_{2}}\binom{n}{k} p^{k} q^{n-k} \approx e r f\left(\frac{k_{2}-n p}{\sqrt{n p q}}\right)-\operatorname{erf}\left(\frac{k_{1}-n p}{\sqrt{n p q}}\right) .
$$

For $\mathrm{n}=900, \mathrm{p}=\mathrm{q}=1 / 2, \mathrm{k}_{1}=420, \mathrm{k}_{2}=465$
8. We place at random $n$ particles in $m>n$ boxes. Find probability $p$ that the particles will be in $\boldsymbol{n}$ pre-selected boxes, one in each box. Solve the problem for the following three cases:
i) Particles are distinguishable.
ii) Particles are not distinguishable.
iii) Particles are not distinguishable and only one particle can be placed in each box.

Hint:

This is the central problem in statistical mechanics.
i) Particles are distinguishable. (Maxwell-Botzmann)

m boxes
ii) Particles are not distinguishable. (Bose-Einstein)

## m-1 walls

n particles


Total number of permutations of $m-1$ wall and $n$ particle $=(n+m-1)$ !
Particles are indistinguishable; their number of permutation=n!
Walls are indistinguishable; their number of permutation=(m-1)!
iii) Particles are indistinguishable and only one particle can be placed in each box. (Fermi-Dirac)

Total number of ways that n distinguishable particles can be placed in m boxes $=$ $m \times(m-1) \times(m .-2) . . \times(m-n+1)=\frac{m!}{(m-n)!}$

