Homework 1

1. If a space S consists of n elements, show that the total number of its subsets are 2^{n}.
2. If $a \cap b \neq 0$, show $P(a \cup b)=P(a)+P(b)-P(a \cap b)$.
3. Show that $P(a \cap b \cap c)=P(a \mid b \cap c) P(b \mid c) P(c)$.
4. Is it possible that two events are independent and mutually exclusive?
5. The probability that an electron is emitted from a substance in an interval $\left(t_{1}\right.$, t_{2}), $\mathrm{t}_{2}>\mathrm{t}_{1}>0$ is given by

$$
P\left\{t_{1} \leq t \leq t_{2}\right\}=e^{-\beta t_{1}}-e^{-\beta t_{2}} \quad \beta=\mathrm{const}
$$

Find $P\left\{t_{0} \leq t \leq t_{0}+\tau \mid t \geq t_{0}\right\}$
6. Two fair dice are rolled 10 times, find the probability p that "seven" will show at least once.
7. A fair coin is tossed $n=900$ times. Find the probability p_{0} that the number of heads will be between 420 and 465 .
8. We place at random n particles in $m>n$ boxes. Find probability p that the particles will be in n pre-selected boxes, one in each box. Solve the problem for the following three cases:
i. Particles are distinguishable.
ii. Particles are not distinguishable.
iii. Particles are not distinguishable and only one particle can be placed in each box.
[Hint. Consult Chapter 1 and problems in Chapter 3 of Papoulis.]

