1. The probability that a driver will have an accident in one month is 0.02 . Find the probability P that in 100 months he will have 3 accidents.
2. A telephone call occurs at random in the interval $(0, \mathrm{~T})$. The probability that the call occurs in the subinterval $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$ is $\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) / \mathrm{T}$. Let a random variable be defined by $X=\sqrt{t}$ (where t is the time of the call), find $\mathrm{F}_{\mathrm{X}}(\mathrm{x})$ and $\mathrm{f}_{\mathrm{X}}(\mathrm{x})$.
3. Given $f(x)=\alpha e^{-\alpha x} U(x)$, find the conditional distribution and density functions, $\mathrm{F}(\mathrm{x} \mid \mathrm{m})$ and $\mathrm{f}(\mathrm{x} \mid \mathrm{m})$ with event $m=\{1<X \leq 2\}$.
4. A random variable is Binomial-distributed. i.e.,

$$
f_{X}(x)=\sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k} \delta(x-k)
$$

find $E\{X\}$ and σ_{X}^{2}.
5. A random variable is defined by $X(\varepsilon)=b$, with b being a given number. Find the distribution and density functions of random variable X .
6. If X is a normal random variable with zero mean. Show that

$$
E\left\{|X|^{n}\right\}=\sqrt{\frac{2}{\pi}} 2^{k} k!\sigma \quad \text { for } \quad \mathrm{n}=2 \mathrm{k}+1
$$

[Hint, $\int_{0}^{\infty} y^{k} e^{-y} d y=k!$.]
7. X is a Poisson random variables with

$$
f_{X}(x)=\sum_{k=0}^{\infty} \frac{e^{-a} a^{k}}{k!} \delta(x-k) .
$$

Find the characteristic function of X . Find $\mathrm{E}\{\mathrm{x}\}$ and σ_{x}^{2} directly from the properties of the characteristic function.
8. The probability density of a random variable is given by

$$
f_{X}(x)=\left\{\begin{array}{cc}
1 / 3 \quad 0<x \leq 1 \\
2 / 3 \quad 1<x \leq 2 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Find the mean, variance and the characteristic function of X. Also determine the moment generating function of X .

