Homework 3

1. Show that the characteristic function of a random variable X must be positivedefinite. i.e.,

$$
\sum_{m=1}^{n} \sum_{k=1}^{n} \Phi\left(\omega_{m}-\omega_{k}\right) a_{m} a_{k}^{*} \geq 0
$$

for any complex number \boldsymbol{a}_{j}.
2. i) Find $F_{Y}(y)$ in terms of $F_{X}(x)$ directly for $Y=1 / X$
ii) For X uniformly distributed between 0,1 , i.e.,

$$
F_{X}(x)=\left\{\begin{array}{cc}
0 & x \leq 0 \\
x & 0<x \leq 1 \\
1 & x>1
\end{array}\right.
$$

Find. $F_{Y}(y)$
iii) If X is normally distributed,

$$
f_{x}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-x^{2} / 2 \sigma}
$$

find the density of Y.
3. For $Y=1 /|X|$, find $F_{Y}(y)$ directly in terms of $F_{X}(x)$, find the corresponding density function, find the density function $f_{Y}(y)$ directly from $f_{X}(x)$.
4. For $W=X-Y$, find $F_{W}(w)$ directly. Find $f_{W}(w)$ with the use of an auxiliary variable. If X and Y are independent random variables with respective densities $\alpha e^{-\alpha x} U(x)$ and $\beta e^{-\beta y} U(y)$, find the density W .
5. Find the joint density of Z and W with $\mathrm{Z}=X+Y, W=X /(X+Y)$. If $f_{X}(x)=e^{-x} U(x), f_{Y}(y)=e^{-y} U(y)$ and X and Y are independent random variable. Show that Z and W are also independent random variable and $f_{Z}(z)=z e^{-z} U(z), \mathrm{W}$ is uniformly distributed in the interval $(0,1)$.
6. $\bar{X}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$ with $X_{j}, j=1, \cdots n$ being independent random variable with $f_{X_{i}}\left(x_{i}\right)=\frac{\alpha / \pi}{\alpha^{2}+x_{i}^{2}}$, show that $f_{\bar{X}}(\bar{x})$ is also Cauchy. Discuss why the central limit theorem does not hold for this sequence.
7. Consider the die rolling experiment. We define a random variable $X\left(\zeta_{j}\right)=j, \mathrm{j}$ being the side shown. Assume that $P\left(\zeta_{j}\right)=1 / 6$ for $j=1,2, \cdots 6$
a) Determine $\mathrm{E}(\mathrm{X})$.
b) Find $\phi_{X}(\omega)$
8. The joint density function of X and Y is given as

$$
f_{X Y}(x, y)=\left\{\begin{aligned}
\frac{1}{a b} & 0 \leq x \leq a, 0 \leq y \leq b \\
& 0 \text { otherwise }
\end{aligned}\right.
$$

a) Determine $\mathrm{E}(\mathrm{X}), \mathrm{E}(\mathrm{XY})$ and the joint characteristic function $\Phi_{X Y}\left(\omega_{1}, \omega_{2}\right)$
b) Find $P(X \leq Y)$.
9. The density of a random variable X is given by

$$
f_{X}(x)=\frac{\alpha}{2} e^{-\alpha|x|}
$$

Let $Y=\sqrt{X} U(X)$
a) Determine $f_{Y}(y)$.
b) Find $\mathrm{E}(\mathrm{Y})$ and sketch $\mathrm{F}_{\mathrm{Y}}(\mathrm{y})$
10.Two independent random variables X and Y are uniformly distributed on $(0,1)$. Given that

$$
\begin{aligned}
& Z=\sqrt{-2 \ln X} \operatorname{Cos} 2 \pi Y \\
& W=\sqrt{-2 \ln X} \operatorname{Sin} 2 \pi Y
\end{aligned}
$$

Find the joint density of Z and W .

