HW Set 4

1. If X(t) is a Possion process, find $E\{[X(t_a) - X(t_b)][X(t_c) - X(t_d)]\}$ when the intervals (t_a, t_b) and (t_c, t_d) are overlapping.

2. In the experiment of tossing a coin, we define a stochastic process X(t) such that $X(t) = \begin{cases} S \text{ int } if \quad \zeta = Head \\ Cost \quad if \quad \zeta = Tail \end{cases} \text{ with } P\{Head\} = P\{Tail\} = 1/2.$

Find the density function $f_X(x,t)$ and sketch the distribution function for t= 1, $\frac{1}{2}$ and $\frac{1}{4}$.

3. Given a Possion process, X(t), show that if $t_1 > t_2$ and k and n are two integer, then

$$P(X(t_1) = k + n \cap X(t_2) = k) = e^{-\lambda t_1} \lambda^{k+n} \frac{(t_1 - t_2)^n t_2^{\kappa}}{n! \, k!}.$$

- 4. Suppose the stochastic process X(t) is stationary and differentiable with derivative $\dot{X}(t)$. Show that the random variables X(t) and $\dot{X}(t)$ are orthogonal and uncorrelated. That is, $E\{X(t)\dot{X}(t)\} = E\{X(t)\}E\{\dot{X}(t)\} = 0$.
- 5. The process X(t) has zero mean and orthogonal increment, and $R_{XX}(t_1, t_2) \rightarrow 0$ as $t_2 \rightarrow \infty$. Show that $R_{XX}(t_1, t_2) = R_{XX}(t_2, t_2)$ for $t_1 > t_2$.
- 6. Suppose X(t) is a zero mean stochastic process with $R_{XX}(t_1, t_2) = e^{-|t_1 t_2|}$. Also suppose Y(t) is the solution to $\frac{dY}{dt} + Y(t) = X(t)$, with initial condition Y(0)=0. Find $E\{Y(t)\}$, $R_{XY}(t_1, t_2)$, and $R_{YY}(t_1, t_2)$.
- 7. Assume that in every 40 years an earthquake of magnitude 5 is expected to occur in a region. Using the Gutenberg-Richter equation, $(log_{10} N = a bM)$, estimate *a* assuming *b*=1. Find the seismic risk for occurrence of earthquakes with magnitude 3, 5 and 7 in time duration of 5 years.
- 8. For $S_0 = 55.44 \text{ cm}^2/\text{s}^3$, and $\Delta t = 0.02 \text{ s}$ numerically generate a sample white noise processes. Evaluate the mean, the variance and autocorrelation of the white noise process. Also plot the probability density function of the process.

ME529