HW Set 4

1. If $X(t)$ is a Possion process, find $E\left\{\left[X\left(t_{a}\right)-X\left(t_{b}\right)\right]\left[X\left(t_{c}\right)-X\left(t_{d}\right)\right]\right\}$ when the intervals $\left(t_{a}, t_{b}\right)$ and $\left(t_{c}, t_{d}\right)$ are overlapping.
2. In the experiment of tossing a coin, we define a stochastic process $X(t)$ such that $X(t)=\left\{\begin{array}{lll}S \text { int } & \text { if } & \zeta=\text { Head } \\ \text { Cost } & \text { if } & \zeta=\text { Tail }\end{array}\right.$ with $\mathrm{P}\{$ Head $\}=\mathrm{P}\{$ Tail $\}=1 / 2$.
Find the density function $f_{X}(x, t)$ and sketch the distribution function for $\mathrm{t}=1,1 / 2$ and $1 / 4$.
3. Given a Possion process, $X(t)$, show that if $t_{1}>t_{2}$ and k and n are two integer, then

$$
P\left(X\left(t_{1}\right)=k+n \cap X\left(t_{2}\right)=k\right\}=e^{-\lambda t_{1}} \lambda^{k+n} \frac{\left(t_{1}-t_{2}\right)^{n} t_{2}^{k}}{n!k!} .
$$

4. Suppose the stochastic process $X(t)$ is stationary and differentiable with derivative $\dot{X}(t)$. Show that the random variables $X(t)$ and $\dot{X}(t)$ are orthogonal and uncorrelated. That is, $E\{X(t) \dot{X}(t)\}=E\{X(t)\} E\{\dot{X}(t)\}=0$.
5. The process $\mathrm{X}(\mathrm{t})$ has zero mean and orthogonal increment, and $R_{X X}\left(t_{1}, t_{2}\right) \rightarrow 0$ as $t_{2} \rightarrow \infty$. Show that $R_{X X}\left(t_{1}, t_{2}\right)=R_{X X}\left(t_{2}, t_{2}\right)$ for $t_{1}>t_{2}$.
6. Suppose $X(t)$ is a zero mean stochastic process with $R_{X X}\left(t_{1}, t_{2}\right)=e^{-\left|t_{1}-t_{2}\right|}$. Also suppose $Y(t)$ is the solution to $\frac{d Y}{d t}+Y(t)=X(t)$, with initial condition $Y(0)=0$. Find $E\{Y(t)\}, R_{X Y}\left(t_{1}, t_{2}\right)$, and $R_{Y Y}\left(t_{1}, t_{2}\right)$.
7. Assume that in every 40 years an earthquake of magnitude 5 is expected to occur in a region. Using the Gutenberg-Richter equation, $\left(\log _{10} N=a-b M\right)$, estimate a assuming $b=1$. Find the seismic risk for occurrence of earthquakes with magnitude 3,5 and 7 in time duration of 5 years.
8. For $\mathrm{S}_{0}=55.44 \mathrm{~cm}^{2} / \mathrm{s}^{3}$, and $\Delta t=0.02 \mathrm{~s}$ numerically generate a sample white noise processes. Evaluate the mean, the variance and autocorrelation of the white noise process. Also plot the probability density function of the process.
