MR 529 - Stochastics cankon

Definicions of Probabilitity

Goodminz Ahmadi
Department of Mechanical and Aeronnantical Engineering Clartsoon Univerisity
Powndnu, NY 13690-5725

Axionaicic (Malingogrou 1933)

Clarkson

The probability of event $a, P(a)$ is defined subject to the following axioms
i) $P(a) \geq 0$
ii) $P(S)=1$
iii) $P(a+b)=P(a)+P(b)$ if $a \cap b=o$

ME 529 - Stochastics

Deinilitions of Probability
 Clarkson

Outline

Axiomatic Definition
Relative Frequency Definition
Classical Definition
Independent Experiments
Permutations and Combinations

ME 529 - Stochastics
G. Ahmadi
If event a, occurs n_{a} time in n trials, $P(a)$ is defined as

$$
P(a)=\lim _{n \rightarrow \infty} \frac{n_{a}}{n}
$$

For mutually exclusive events a, and b,

$$
\begin{aligned}
P(a+b) & =\lim _{n \rightarrow \infty} \frac{n_{a}+n_{b}}{n} \\
& =\lim _{n \rightarrow \infty}\left(\frac{n_{a}}{n}+\frac{n_{b}}{n}\right)=P(a)+P(b)
\end{aligned}
$$

Classican Deinition
 Clarkson
 University

If N_{a} is the number of outcomes favorable to event a, and N is the total number of outcomes, $P(a)$ is defined as

$$
P(a)=\frac{N_{a}}{N}
$$

For mutually exclusive events a, and b,

$$
\begin{aligned}
P(a+b) & =\frac{N_{a+b}}{N}=\frac{N_{a}+N_{b}}{N} \\
& =\frac{N_{a}}{N}+\frac{N_{b}}{N}=P(a)+P(b)
\end{aligned}
$$

Pemmulacionis/Cominalions

```
P}=n!=n(n-1)...\times2\times
```

$$
P_{k}^{n}=\frac{n!}{(n-k)!}
$$

$$
=n \times(n-1) \times \ldots(n-k+1)
$$

Combinations
$\binom{n}{k}=\frac{n!}{(n-k)!k!}$

```
Independent Experiments
```

If F_{1} and F_{2} are independent experiments, then the probability that event a_{1} occurs in F_{1} and event a_{2} occurs in F_{2} is

$$
P\left(a_{1} \text { and } a_{2}\right)=P\left(a_{1}\right) P\left(a_{2}\right)
$$

Concluding Remarks

Definition of Probablity

- Axiomatic
- Relative Frequency
- Classical Definition

Independent Experiments
Permutations and Combinations
b 24 - stocnasucs

