Goodmarz Ahmodi		
Department of Mechanical and Aeronnatical Engineering Clarkson University		
529-Stochastics		

Review off ser Theory Clarkson - Definilitions

```
Set is a collection of elements
Subset b of al(all element of b}\mathrm{ are element of a)
Space S - largest set
Nulll Set O - empty set
```


Review of seft fie	Clarkson
Outline	
- Definitions	
- Set Operations	
> Probability Space	
> Borel Field	
> Probability Experiment	
ME 529 - Sochastics	

Subset: \boldsymbol{b} is a subset of \boldsymbol{a} if all element of b are element of a)

$$
\text { If } b \subset a, \& \quad c \subset b, c \subset a
$$

Equality $a=b$ iff $a \subset b$ \& $b \subset a$

Union (Sum)
 Clarkson

Elements of union of sets a and b are elements of \boldsymbol{a} or \boldsymbol{b} or both

$$
\begin{aligned}
& a \cup b=b \cup a \\
& a \cup a=a \\
& a \cup 0=a \quad a \cup S=S \\
& (a \cup b) \cup c=a \cup(b \cup c)=a \cup b \cup c
\end{aligned}
$$

Clarkson
Mutually exclusive sets have no common element.

$$
a \cap b=0
$$

Sets $a_{1}, a_{2} \ldots$ are mutually exclusive if

$$
a_{i} \cap a_{j}=0 \text { for } i \neq j
$$

G. Ahmadi

Elements of intersection of sets \boldsymbol{a} and \boldsymbol{b} are elements of both a and b.

Elements of complement of set a are elements of S which are not in a.

ME 529 - Stochastics
G. Ahmadi

Difierencice of Two Sets
 Clarkson

Elements of $\boldsymbol{a}-\boldsymbol{b}$ are elements of \boldsymbol{a} that are not in b.

$$
\begin{aligned}
& a-b=a \cap \bar{b}=a-a \cap b \\
& \hline a=(a-b) \cup(a \cap b) \\
& (a-a) \cup a=a \quad \bar{a}=S-a \\
& \\
& \hline a \cup a-a=0
\end{aligned}
$$

Probabilidity Space carkon

Random Experiment \mathfrak{J}

By an experiment \mathfrak{J} we mean a set (space) S
of outcomes ξ. Elements of S are outcomes
or elementary events. S is a probability
(sample) space. Subsets of S are called
events. Space S is the sure (certain) event.
Empty set O is the impossible event.

Mutually Exclusive Events $\quad a \cap b=0$
ME 529 - Stochastics
G. Ahmadi

Probabibility Space cutem

Axioms of Probability

To each event a, a measure $P(a)$ is assigned subject to the following axioms
i) $P(a) \geq 0$
ii) $P(S)=1$

$$
\text { iii) } P(a \cup b)=P(a)+P(b) \quad \text { If } a \cap b=0
$$

Corollaries

$P(0)=0$
$P(a)=1-P(\bar{a}) \leq 1$
If $a \cap b \neq 0 \| P(a \cup b)=P(a)+P(b)-P(a \cap b)$
If $b \subset a$
$P(a)=P(b)+P(a \cap \bar{b}) \geq P(b)$
ME 529 - Stochastics
G. Ahmadi

If a field has the property that if the sets $a_{1}, a_{20} \ldots, a_{n}, \ldots$ belong to it then so does the set $a_{1} \cup a_{2} \cup a_{3} \cup \ldots \cup$ $a_{n} \cup \ldots$, then the field is called a Borel field. Note that the class of all subsets of S is a Borel field.

Probability Experiment \mathfrak{J} : (S, F, P)

1. Set S of outcomes ξ; this set is called space or sure (certain) event
2. Borel field \boldsymbol{F} consisting of certain subsets of S called events
3. Measure $\boldsymbol{P}(a)$ assigned to every event a; this measure is called probability of event a, satisfies axioms 1 to 3
```
Review of Set Theory=
    Probability Space

\section*{Concluding Remarks}
```

Definitions
$>$ Set Operations
\Rightarrow Probability Space
Borel Field

- Probability Experiment

Example. Probability Experiment of Tossing a Coin, J: (S, F, P)
$S=\{h, t\}$
$F: 0,\{h\},\{t\},\{h, t\}$

$$
P(h)=p \quad P\{t\}=q \quad p+q=1
$$

Review of Set Theory yarcon

 Thanla youl Questions?